scispace - formally typeset
Search or ask a question
Author

Ming Guo

Bio: Ming Guo is an academic researcher from Wuhan University. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 3, co-authored 3 publications receiving 1233 citations.

Papers
More filters
Journal ArticleDOI
27 Apr 2020-Nature
TL;DR: It is proposed that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols, although the infectivity of the virus RNA was not established in this study.
Abstract: The ongoing outbreak of coronavirus disease 2019 (COVID-19) has spread rapidly on a global scale. Although it is clear that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted through human respiratory droplets and direct contact, the potential for aerosol transmission is poorly understood1-3. Here we investigated the aerodynamic nature of SARS-CoV-2 by measuring viral RNA in aerosols in different areas of two Wuhan hospitals during the outbreak of COVID-19 in February and March 2020. The concentration of SARS-CoV-2 RNA in aerosols that was detected in isolation wards and ventilated patient rooms was very low, but it was higher in the toilet areas used by the patients. Levels of airborne SARS-CoV-2 RNA in the most public areas was undetectable, except in two areas that were prone to crowding; this increase was possibly due to individuals infected with SARS-CoV-2 in the crowd. We found that some medical staff areas initially had high concentrations of viral RNA with aerosol size distributions that showed peaks in the submicrometre and/or supermicrometre regions; however, these levels were reduced to undetectable levels after implementation of rigorous sanitization procedures. Although we have not established the infectivity of the virus detected in these hospital areas, we propose that SARS-CoV-2 may have the potential to be transmitted through aerosols. Our results indicate that room ventilation, open space, sanitization of protective apparel, and proper use and disinfection of toilet areas can effectively limit the concentration of SARS-CoV-2 RNA in aerosols. Future work should explore the infectivity of aerosolized virus.

1,526 citations

Posted ContentDOI
10 Mar 2020-bioRxiv
TL;DR: Room ventilation, open space, proper use and disinfection of toilet can effectively limit aerosol transmission of SARS-CoV-2, and effective sanitization is critical in minimizing aerosol transmitters.
Abstract: Background The ongoing outbreak of COVID-19 has spread rapidly and sparked global concern. While the transmission of SARS-CoV-2 through human respiratory droplets and contact with infected persons is clear, the aerosol transmission of SARS-CoV-2 has been little studied. Methods Thirty-five aerosol samples of three different types (total suspended particle, size segregated and deposition aerosol) were collected in Patient Areas (PAA) and Medical Staff Areas (MSA) of Renmin Hospital of Wuhan University (Renmin) and Wuchang Fangcang Field Hospital (Fangcang), and Public Areas (PUA) in Wuhan, China during COVID-19 outbreak. A robust droplet digital polymerase chain reaction (ddPCR) method was employed to quantitate the viral SARS-CoV-2 RNA genome and determine aerosol RNA concentration. Results The ICU, CCU and general patient rooms inside Renmin, patient hall inside Fangcang had undetectable or low airborne SARS-CoV-2 concentration but deposition samples inside ICU and air sample in Fangcang patient toilet tested positive. The airborne SARS-CoV-2 in Fangcang MSA had bimodal distribution with higher concentration than those in Renmin during the outbreak but turned negative after patients number reduced and rigorous sanitization implemented. PUA had undetectable airborne SARS-CoV-2 concentration but obviously increased with accumulating crowd flow. Conclusions Room ventilation, open space, proper use and disinfection of toilet can effectively limit aerosol transmission of SARS-CoV-2. Gathering of crowds with asymptomatic carriers is a potential source of airborne SARS-CoV-2. The virus aerosol deposition on protective apparel or floor surface and their subsequent resuspension is a potential transmission pathway and effective sanitization is critical in minimizing aerosol transmission of SARS-CoV-2.

225 citations

Journal ArticleDOI
TL;DR: In this paper , a lyophilization technique was used to prepare SARS-CoV-2 mRNA-lipid nanoparticle vaccines with long-term thermostability.
Abstract: Advanced mRNA vaccines play vital roles against SARS-CoV-2. However, most current mRNA delivery platforms need to be stored at -20 °C or -70 °C due to their poor stability, which severely restricts their availability. Herein, we develop a lyophilization technique to prepare SARS-CoV-2 mRNA-lipid nanoparticle vaccines with long-term thermostability. The physiochemical properties and bioactivities of lyophilized vaccines showed no change at 25 °C over 6 months, and the lyophilized SARS-CoV-2 mRNA vaccines could elicit potent humoral and cellular immunity whether in mice, rabbits, or rhesus macaques. Furthermore, in the human trial, administration of lyophilized Omicron mRNA vaccine as a booster shot also engendered strong immunity without severe adverse events, where the titers of neutralizing antibodies against Omicron BA.1/BA.2/BA.4 were increased by at least 253-fold after a booster shot following two doses of the commercial inactivated vaccine, CoronaVac. This lyophilization platform overcomes the instability of mRNA vaccines without affecting their bioactivity and significantly improves their accessibility, particularly in remote regions.

12 citations

Posted ContentDOI
08 Sep 2020-bioRxiv
TL;DR: This study uses virus-host receptor binding and infection assays to show that ACE2 orthologs from 24, 21, and 16 of 46 phylogenetically diverse bat species – including those in close and distant contact with humans – do not support entry of SARS-CoV, SARV-2, and both of these coronaviruses, respectively.
Abstract: Bats are the suggested natural hosts for severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2, the latter of which caused the coronavirus disease 2019 (COVID-19) pandemic. The interaction of viral Spike proteins with their host receptor angiotensin-converting enzyme 2 (ACE2) is a critical determinant of potential hosts and cross-species transmission. Here we use virus-host receptor binding and infection assays to show that ACE2 orthologs from 24, 21, and 16 of 46 phylogenetically diverse bat species, including those in close and distant contact with humans, do not support entry of SARS-CoV, SARS-CoV-2, and both of these coronaviruses, respectively. Furthermore, we used genetic and functional analyses to identify genetic changes in bat ACE2 receptors associated with viral entry restrictions. Our study demonstrates that many, if not most, bat species are not potential hosts of SARS-CoV and SARS-CoV-2, and provides important insights into pandemic control and wildlife conservation.

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors reported that the use of Remdesivir in hospitalized COVID-19 patients might predispose bacteremia, matched case-control analysis.

4 citations


Cited by
More filters
Journal ArticleDOI
23 Jul 2020-Cell
TL;DR: The nasal susceptibility to SARS-CoV-2 with likely subsequent aspiration-mediated virus seeding to the lung in SARS/COVID-19 pathogenesis is highlighted and reagents provide a foundation for investigations into virus-host interactions in protective immunity, host susceptibility, and virus pathogenesis.

1,163 citations

Journal ArticleDOI
TL;DR: It is concluded that wearing of face masks in public corresponds to the most effective means to prevent interhuman transmission, and this inexpensive practice, in conjunction with simultaneous social distancing, quarantine, and contact tracing, represents the most likely fighting opportunity to stop the COVID-19 pandemic.
Abstract: Various mitigation measures have been implemented to fight the coronavirus disease 2019 (COVID-19) pandemic, including widely adopted social distancing and mandated face covering. However, assessing the effectiveness of those intervention practices hinges on the understanding of virus transmission, which remains uncertain. Here we show that airborne transmission is highly virulent and represents the dominant route to spread the disease. By analyzing the trend and mitigation measures in Wuhan, China, Italy, and New York City, from January 23 to May 9, 2020, we illustrate that the impacts of mitigation measures are discernable from the trends of the pandemic. Our analysis reveals that the difference with and without mandated face covering represents the determinant in shaping the pandemic trends in the three epicenters. This protective measure alone significantly reduced the number of infections, that is, by over 78,000 in Italy from April 6 to May 9 and over 66,000 in New York City from April 17 to May 9. Other mitigation measures, such as social distancing implemented in the United States, are insufficient by themselves in protecting the public. We conclude that wearing of face masks in public corresponds to the most effective means to prevent interhuman transmission, and this inexpensive practice, in conjunction with simultaneous social distancing, quarantine, and contact tracing, represents the most likely fighting opportunity to stop the COVID-19 pandemic. Our work also highlights the fact that sound science is essential in decision-making for the current and future public health pandemics.

965 citations

Journal ArticleDOI
TL;DR: It is argued that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors, and that the use of engineering controls in public buildings would be an additional important measure globally to reduce the likelihood of transmission.

924 citations

Journal ArticleDOI
TL;DR: Observations confirm that there is a substantial probability that normal speaking causes airborne virus transmission in confined environments.
Abstract: Speech droplets generated by asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are increasingly considered to be a likely mode of disease transmission. Highly sensitive laser light scattering observations have revealed that loud speech can emit thousands of oral fluid droplets per second. In a closed, stagnant air environment, they disappear from the window of view with time constants in the range of 8 to 14 min, which corresponds to droplet nuclei of ca. 4 μm diameter, or 12- to 21-μm droplets prior to dehydration. These observations confirm that there is a substantial probability that normal speaking causes airborne virus transmission in confined environments.

878 citations

Journal ArticleDOI
TL;DR: The following scientists reviewed the document: Jonathan Abbatt, John Adgate, Alireza Afshari, KangHo Ahn, Francis Allard, Joseph Allen, Celia Alves, Meinrat O.Hussein, Gabriel Isaacman-VanWertz, Jouni J.C.Johansson, Jan Kaczmarczyk, George Kallos, David Katoshevski, Frank Kelly, Soren Kjaergaard,Luke D.
Abstract: The following scientists reviewed the document: Jonathan Abbatt, John Adgate, Alireza Afshari, KangHo Ahn, Francis Allard, Joseph Allen, Celia Alves, Meinrat O. Andreae, Isabella Annesi-Maesano, Ahmet Arisoy, Andrew P. Ault, Gwi-Nam Bae, Gabriel Beko, Scott C. Bell, Allan Bertram, Mahmood Bhutta, Seweryn Bialasiewicz, Merete Bilde, Tami Bond, Joseph Brain, Marianna Brodach, David M. Broday, Guangyu Cao, Christopher D. Cappa, Annmarie Carlton, Paul K. S. Chan, Christopher Chao, Kuan-Fu Chen, Qi Chen, Qingyan Chen, David Cheong, Per Axcel Clausen, Ross Crawford, Derek Clements-Croome, Geo Clausen, Ian Clifton, Richard L. Corsi, Benjamin J. Cowling, Francesca Romana d'Ambrosio, Ghassan Dbaibo, Richard de Dear, Gianluigi de Gennaro, Peter DeCarlo, Philip Demokritou, Hugo Destaillats, Joanna Domagala-Kulawik, Neil M. Donahue, Caroline Duchaine, Marzenna R. Dudzinska, Dominic E. Dwyer, Greg Evans, Delphine K. Farmer, Kevin P. Fennelly, Richard Flagan, Janine Frohlich-Nowoisky, Manuel Gameiro da Silva, Christian George, Marianne Glasius, Allen H. Goldstein, Joao Gomes, Michael Gormley, Rafal Gorny, David Grimsrud, Keith Grimwood, Charles N. Haas, Fariborz Haghighat, Michael Hannigan, Roy Harrison, Ulla HaverinenShaughnessy, Philippa Howden-Chapman, Per Heiselberg, Daven K. Henze, Jean-Michel Heraud, Hartmut Herrmann, Philip K. Hopke, Ray Horstman, Wei Huang, Alex Huffman, David S. Hui, Tareq Hussein, Gabriel Isaacman-VanWertz, Jouni J.K. Jaakkola, Matti Jantunen, Lance Jennings, Dennis Johansson, Jan Kaczmarczyk, George Kallos, David Katoshevski, Frank Kelly, Soren Kjaergaard, Luke D. Knibbs, Henrik N. Knudsen, GwangPyo Ko, Evelyn S.C. Koay, Jen Kok, Nino Kuenzli, Markku Kulmala, Kazukiyo Kumagai, Prashant Kumar, Kazumichi Kuroda, Kiyoung Lee, Nelson Lee, Barry Lefer, Vincent Lemort, Xianting Li, Dusan Licina, Chao-Hsin Lin, Junjie Liu, Kam Lun E. Hon, John C. Little, Li Liu, Janet M. Macher, Ebba Malmqvist, Corinne Mandin, Ivo Martinac, Dainius Martuzevicius, Mark J. Mendell, David Miller, Claudia Mohr, Luisa T. Molina, Glenn Morrison, Roya Mortazavi, Edward Nardell, Athanasios Nenes, Mark Nicas, Zhi Ning, Jianlei Niu, Hidekazu Nishimura, Colin O'Dowd, Bjarne W. Olesen, Paula J. Olsiewski, Spyros Pandis, Daniel Peckham, Tuukka Petaja, Zbigniew Popiolek, Ulrich Poschl, Wayne R. Ott, Kimberly Prather, Andre S. H. Prevot, Hua Qian, Shanna Ratnesar-Shumate, James L. Repace, Tiina Reponen, Ilona Riipinen, Susan Roaf, Allen L. Robinson, Yinon Rudich, Manuel Ruiz de Adana, Masayuki Saijo, Reiko Saito, Paulo Saldiva, Tunga Salthammer, Joshua L. Santarpia, John H. Seinfeld, Gary S. Settles, Siegfried Schobesberger, Paul T. J. Scheepers, Max H. Sherman, Alan Shihadeh, Manabu Shiraiwa, Jeffrey Siegel, Torben Sigsgaard, Brett C. Singer, James N. Smith, Armin Sorooshian, Jerzy Sowa, Brent Stephens, Huey-Jen Jenny Su, Jordi Sunyer, Jason D. Surratt, Kazuo Takahashi, Nobuyuki Takegawa, Jorn Toftum, Margaret A. Tolbert, Euan Tovey, Barbara J. Turpin, Annele Virtanen, John Volckens, Claire Wainwright, Lance A. Wallace, Boguang Wang, Chia C. Wang, Michael Waring, John Wenger, Charles J. Weschler, Brent Williams, Mary E. Wilson, Armin Wisthaler, Kazimierz Wojtas, Douglas R. Worsnop, Ying Xu, Naomichi Yamamoto, Xudong Yang, Hui-Ling Yen, Hiroshi Yoshino, Hassan Zaraket, Zhiqiang (John) Zhai, Junfeng (Jim) Zhang, Qi Zhang, Jensen Zhang, Yinping Zhang, Bin Zhao, Tong Zhu.

853 citations