scispace - formally typeset
Search or ask a question
Author

Ming-Hui Lu

Bio: Ming-Hui Lu is an academic researcher from Nanjing University. The author has contributed to research in topics: Topological insulator & Photonic crystal. The author has an hindex of 44, co-authored 213 publications receiving 9179 citations. Previous affiliations of Ming-Hui Lu include Cornell University & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: The demonstrated unidirectional phenomenon at the corresponding parity-time exceptional point on-a-chip confirms the feasibility of creating complicated on-chip parity- time metamaterials and optical devices based on their properties.
Abstract: Invisibility by metamaterials is of great interest, where optical properties are manipulated in the real permittivity– permeability plane. However, the most effective approach to achieving invisibility in various military applications is to absorb the electromagnetic waves emitted from radar to minimize the corresponding reflection and scattering, such that no signal gets bounced back. Here, we show the experimental realization of chip-scale unidirectional reflectionless optical metamaterials near the spontaneous parity-time symmetry phase transition point where reflection from one side is significantly suppressed. This is enabled by engineering the corresponding optical properties of the designed paritytime metamaterial in the complex dielectric permittivity plane. Numerical simulations and experimental verification consistently exhibit asymmetric reflection with high contrast ratios around a wavelength of of 1,550 nm. The demonstrated unidirectional phenomenon at the corresponding parity-time exceptional point on-a-chip confirms the feasibility of creating complicated on-chip parity-time metamaterials and optical devices based on their properties.

1,253 citations

Journal ArticleDOI
TL;DR: In this article, the acoustic analogue of a topological insulator is shown: a metamaterial exhibiting one-way sound transport along its edge, a graphene-like array of stainless-steel rods.
Abstract: The acoustic analogue of a topological insulator is shown: a metamaterial exhibiting one-way sound transport along its edge. The system — a graphene-like array of stainless-steel rods — is a promising new platform for exploring topological phenomena.

901 citations

Journal ArticleDOI
05 Aug 2011-Science
TL;DR: A metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a silicon photonic chip is designed and fabricated.
Abstract: Optical communications and computing require on-chip nonreciprocal light propagation to isolate and stabilize different chip-scale optical components. We have designed and fabricated a metallic-silicon waveguide system in which the optical potential is modulated along the length of the waveguide such that nonreciprocal light propagation is obtained on a silicon photonic chip. Nonreciprocal light transport and one-way photonic mode conversion are demonstrated at the wavelength of 1.55 micrometers in both simulations and experiments. Our system is compatible with conventional complementary metal-oxide-semiconductor processing, providing a way to chip-scale optical isolators for optical communications and computing.

615 citations

Journal ArticleDOI
TL;DR: In this paper, a phononic crystal in an acoustic “atom” scale has been proposed and some important characteristics such as acoustic band structure and negative refraction have been investigated in acoustic materials and devices.

461 citations

Journal ArticleDOI
Meng Guo1, Jin-Hong Liu1, Xiao Ma1, De-Xu Luo, Zhen-Hui Gong1, Ming-Hui Lu1 
TL;DR: Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.
Abstract: Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

416 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that coupled optical microcavities bear all the hallmarks of parity-time symmetry; that is, the system dynamics are unchanged by both time-reversal and mirror transformations.
Abstract: It is now shown that coupled optical microcavities bear all the hallmarks of parity–time symmetry; that is, the system’s dynamics are unchanged by both time-reversal and mirror transformations. The resonant nature of microcavities results in unusual effects not seen in previous photonic analogues of parity–time-symmetric systems: for example, light travelling in one direction is resonantly enhanced but there are no resonance peaks going the other way.

2,061 citations