scispace - formally typeset
Search or ask a question
Author

Ming Li

Bio: Ming Li is an academic researcher from Kunming Institute of Zoology. The author has contributed to research in topics: Genome-wide association study & Single-nucleotide polymorphism. The author has an hindex of 32, co-authored 134 publications receiving 3016 citations. Previous affiliations of Ming Li include Johns Hopkins University & Third Military Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: The results provide a molecular explanation for the prominent 10q24.32 locus association, including a novel and evolutionarily recent protein that is involved in early brain development and confers risk for psychiatric illness.
Abstract: eQTL analysis of human brain RNA-seq data targeted to genes within the 10q24.32 schizophrenia-associated locus reveals that the risk SNP in this region is selectively associated with expression of BORCS7 and a human-specific isoform of AS3MT across multiple independent samples. Expression of only the associated AS3MT isoform is higher in tissue from humans with schizophrenia than in healthy controls.

141 citations

Journal ArticleDOI
TL;DR: A significant association between rs186996510 and hemoglobin levels in Tibetans is detected, suggesting that EGLN1 contributes to the adaptively low hemoglobin level of Tibetans compared with acclimatized lowlanders at high altitude.
Abstract: Tibetans are well adapted to high-altitude hypoxic conditions, and in recent genome-wide scans, many candidate genes have been reported involved in the physiological response to hypoxic conditions. However, the limited sequence variations analyzed in previous studies would not be sufficient to identify causal mutations. Here we conducted resequencing of the entire genomic region (59.4kb) of the hypoxic geneEGLN1(one of the top candidates from the genome-wide scans) in Tibetans and identified 185 sequence variations, including 13 novel variations (12 substitutions and 1 insertion or deletion). There is a nonsynonymous mutation (rs186996510, D4E) showing surprisingly deep divergence between Tibetans and lowlander populations (FST=0.709 between Tibetans and Han Chinese). It is highly prevalent in Tibetans (70.9% on average) but extremely rare in Han Chinese, Japanese, Europeans, and Africans (0.56‐2.27%), suggesting that it might be the causal mutation of EGLN1 contributing to high-altitude hypoxic adaptation. Neutrality test confirmed the signal of Darwinian positive selection on EGLN1 in Tibetans. Haplotype network analysis revealed a Tibetan-specific haplotype, which is absent in other world populations. The estimated selective intensity (0.029 for the C allele of rs186996510) puts EGLN1 among the known genes that have undergone the strongest selection in human populations, and the onset of selection was estimated to have started at the early Neolithic (~8,400 years ago). Finally, we detected a significant association between rs186996510 and hemoglobin levels in Tibetans, suggesting that EGLN1 contributes to the adaptively low hemoglobin level of Tibetans compared with acclimatized lowlanders at high altitude.

135 citations

Journal ArticleDOI
15 Aug 2017-Mbio
TL;DR: The first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques is provided and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART.
Abstract: A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. IMPORTANCE Resting CD4+ T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4+ T cells and underscore the importance of macrophages in developing strategies to eradicate HIV.

132 citations

Journal ArticleDOI
02 Jan 2017-AIDS
TL;DR: The central nervous system harbors latent SIV genomes after long-term viral suppression by ART, indicating that the brain represents a potential viral reservoir and should be seriously considered during AIDS cure strategies.
Abstract: Objective Resting CD4 T cells have been recognized as the major cell reservoir of latent HIV-1 during antiretroviral therapy (ART). Using an simian immunodeficiency virus (SIV)/macaque model for AIDS and HIV-related neurocognitive disorders we assessed the contribution of the brain to viral latency and reactivation. Design Pigtailed macaques were dual inoculated with SIVDeltaB670 and SIV17E-Fr and treated with an efficacious central nervous system-penetrant ART. After 500 days of viral suppression animals were treated with two cycles of latency reversing agents and increases in viral transcripts were examined. Methods Longitudinal plasma and cerebrospinal fluid (CSF) viral loads were analyzed by quantitative and digital droplet PCR. After necropsy, viral transcripts in organs were analyzed by PCR, in-situ hybridization, and phylogenetic genotyping based on env V1 loop sequences. Markers for neuronal damage and CSF activation were measured by ELISA. Results Increases in activation markers and plasma and CSF viral loads were observed in one animal treated with latency reversing agents, despite ongoing ART. SIV transcripts were identified in occipital cortex macrophages by in-situ hybridization and CD68 staining. The most abundant SIV genotype in CSF was unique and expanded independent from viruses found in the periphery. Conclusion The central nervous system harbors latent SIV genomes after long-term viral suppression by ART, indicating that the brain represents a potential viral reservoir and should be seriously considered during AIDS cure strategies.

115 citations

Journal ArticleDOI
TL;DR: Data, generated in a rigorous, high-viral-load SIV-infected macaque model, showed that HAART provided benefits with respect to CNS viral replication and inflammation but that no change in the level of viral DNA and continued CNS inflammation occurred in some macaques.
Abstract: Background During the era of highly active antiretroviral therapy (HAART), the prevalence of HIV-associated central nervous system (CNS) disease has increased despite suppression of plasma viremia. Methods In a simian immunodeficiency virus (SIV) model system in which all animals develop AIDS and 90% develop CNS disease by 3 months after inoculation, pigtailed macaques were treated with a regimen of tenofovir disoproxil fumarate, saquinavir, atazanavir, and an integrase inhibitor starting at 12 days after inoculation and were euthanized at approximately 175 days after inoculation. Results Plasma and cerebrospinal fluid (CSF) viral loads declined rapidly after the initiation of HAART. Brain viral RNA was undetectable at necropsy, but viral DNA levels were not different from those in untreated SIV-infected macaques. CNS inflammation was significantly reduced, with decreased brain expression of major histocompatibility complex class II and glial fibrillary acidic protein and reduced levels of CSF CCL2 and interleukin 6. Brain from treated macaques had significantly lower levels of interferon beta, type 1 interferon-inducible gene myxovirus (influenza) resistance A, and indolamine 2,3-dioxygenase messenger RNA, suggesting that immune hyperactivation was suppressed, and fewer CD4(+) and CD8(+) T cells, suggesting that trafficking of T cells from peripheral blood was reduced. Brain levels of CD68 protein and tumor necrosis factor alpha and interferon gamma RNA were reduced but were not significantly lower, indicating continued CNS inflammation. Conclusions These data, generated in a rigorous, high-viral-load SIV-infected macaque model, showed that HAART provided benefits with respect to CNS viral replication and inflammation but that no change in the level of viral DNA and continued CNS inflammation occurred in some macaques.

106 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal Article
TL;DR: Why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease are detailed.
Abstract: Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease.

1,323 citations

Journal ArticleDOI
TL;DR: A genetic meta-analysis of depression found 269 associated genes that highlight several potential drug repositioning opportunities, and relationships with depression were found for neuroticism and smoking.
Abstract: Major depression is a debilitating psychiatric illness that is typically associated with low mood and anhedonia. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximize sample size, we meta-analyzed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 genesets associated with depression, including both genes and gene pathways associated with synaptic structure and neurotransmission. An enrichment analysis provided further evidence of the importance of prefrontal brain regions. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant after multiple testing correction. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding etiology and developing new treatment approaches.

1,312 citations