scispace - formally typeset
Search or ask a question
Author

Ming Wah Wong

Bio: Ming Wah Wong is an academic researcher from National University of Singapore. The author has contributed to research in topics: Ab initio & Ab initio quantum chemistry methods. The author has an hindex of 41, co-authored 232 publications receiving 9225 citations. Previous affiliations of Ming Wah Wong include Technical University of Berlin & Free University of Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a comparison of several density functional methods for calculating vibrational frequencies is reported, including the local S-VWN (LSDA) functional, the non-local B-LYP and B-VNN functionals, and the hybrid B3-P86 functionals.

1,099 citations

Journal ArticleDOI
TL;DR: In this paper, the scaling factors for obtaining fundamental vibrational frequencies and zero-point vibrational energies from harmonic frequencies calculated at the HF/6−31G* and MP2/6-31G*) levels were derived from a comparison of a total of 1066 calculated frequencies for 122 molecules with corresponding experimental values.
Abstract: New scaling factors have been determined for obtaining fundamental vibrational frequencies and zero-point vibrational energies from harmonic frequencies calculated at the HF/6–31G* and MP2/6–31G* levels. The scaling factors for the fundamental frequencies have been derived from a comparison of a total of 1066 calculated frequencies for 122 molecules with corresponding experimental values, while the zero-point energy scaling factors were determined from a comparison of the computed values with the experimental zero-point energies for a set of 24 molecules. The scaling factors recommended are, respectively, 0.8929 and 0.9427 for HF/6–31G* and MP2/6–31G* fundamental frequencies, and 0.9135 and 0.9646 for HF/6–31G* and MP2/6–31G* zero-point energies. RMS errors were determined to be around 50 cm−1 for the HF and MP2 fundamental frequencies, and around 0.4 kJ mol−1 for the HF and MP2 zero-point energies.

765 citations

Journal ArticleDOI
TL;DR: In this paper, high level ab initio molecular orbital studies, using basis sets upto 6-31+G**, with electron correlation included at the second-order MOller Plesset perturbation (MP2) and quadratic configuration interaction with singles and doubles (QCISD) levels, are reported for the tautomeric equilibria of formamide/formamidic acid and 2-pyridone/2-hydroxypyridine in the gas phase and solution.
Abstract: High level ab initio molecular orbital studies, using basis sets upto 6-31+G**, with electron correlation included at the second-order MOller Plesset perturbation (MP2) and quadratic configuration interaction with singles and doubles (QCISD) levels, are reported for the tautomeric equilibria of formamide/formamidic acid and 2-pyridone/2-hydroxypyridine in the gas phase and solution. The solvent effects on the tautomeric equilibria were investigated by self-consistent reaction field (SCRF) theory

482 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: In this paper, scaling factors for fundamental vibrational frequencies, low-frequency vibrations, zero-point vibrational energies (ZPVE), and thermal contributions to enthalpy and entropy from harmonic frequencies determined at 19 levels of theory have been derived through a least-squares approach.
Abstract: Scaling factors for obtaining fundamental vibrational frequencies, low-frequency vibrations, zero-point vibrational energies (ZPVE), and thermal contributions to enthalpy and entropy from harmonic frequencies determined at 19 levels of theory have been derived through a least-squares approach. Semiempirical methods (AM1 and PM3), conventional uncorrelated and correlated ab initio molecular orbital procedures [Hartree−Fock (HF), Moller−Plesset (MP2), and quadratic configuration interaction including single and double substitutions (QCISD)], and several variants of density functional theory (DFT: B-LYP, B-P86, B3-LYP, B3-P86, and B3-PW91) have been examined in conjunction with the 3-21G, 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-311G(d,p), and 6-311G(df,p) basis sets. The scaling factors for the theoretical harmonic vibrational frequencies were determined by a comparison with the corresponding experimental fundamentals utilizing a total of 1066 individual vibrations. Scaling factors suitable for low-frequency vib...

6,287 citations

Journal ArticleDOI
Thomas A. Halgren1
TL;DR: The first published version of the Merck molecular force field (MMFF) is MMFF94 as mentioned in this paper, which is based on the OPLS force field and has been applied to condensed-phase processes.
Abstract: This article introduces MMFF94, the initial published version of the Merck molecular force field (MMFF). It describes the objectives set for MMFF, the form it takes, and the range of systems to which it applies. This study also outlines the methodology employed in parameterizing MMFF94 and summarizes its performance in reproducing computational and experimental data. Though similar to MM3 in some respects, MMFF94 differs in ways intended to facilitate application to condensed-phase processes in molecular-dynamics simulations. Indeed, MMFF94 seeks to achieve MM3-like accuracy for small molecules in a combined “organic/protein” force field that is equally applicable to proteins and other systems of biological significance. A second distinguishing feature is that the core portion of MMFF94 has primarily been derived from high-quality computational data—ca. 500 molecular structures optimized at the HF/6-31G* level, 475 structures optimized at the MP2/6-31G* level, 380 MP2/6-31G* structures evaluated at a defined approximation to the MP4SDQ/TZP level, and 1450 structures partly derived from MP2/6-31G* geometries and evaluated at the MP2/TZP level. A third distinguishing feature is that MMFF94 has been parameterized for a wide variety of chemical systems of interest to organic and medicial chemists, including many that feature frequently occurring combinations of functional groups for which little, if any, useful experimental data are available. The methodology used in parameterizing MMFF94 represents a fourth distinguishing feature. Rather than using the common “functional group” approach, nearly all MMFF parameters have been determined in a mutually consistent fashion from the full set of available computational data. MMFF94 reproduces the computational data used in its parameterization very well. In addition, MMFF94 reproduces experimental bond lengths (0.014 A root mean square [rms]), bond angles (1.2° rms), vibrational frequencies (61 cm−1 rms), conformational energies (0.38 kcal/mol/rms), and rotational barriers (0.39 kcal/mol rms) very nearly as well as does MM3 for comparable systems. MMFF94 also describes intermolecular interactions in hydrogen-bonded systems in a way that closely parallels that given by the highly regarded OPLS force field. © 1996 John Wiley & Sons, Inc.

4,353 citations

Journal ArticleDOI
TL;DR: This chapter discusses the development of DFT as a tool for Calculating Atomic andMolecular Properties and its applications, as well as some of the fundamental and Computational aspects.
Abstract: I. Introduction: Conceptual vs Fundamental andComputational Aspects of DFT1793II. Fundamental and Computational Aspects of DFT 1795A. The Basics of DFT: The Hohenberg−KohnTheorems1795B. DFT as a Tool for Calculating Atomic andMolecular Properties: The Kohn−ShamEquations1796C. Electronic Chemical Potential andElectronegativity: Bridging Computational andConceptual DFT1797III. DFT-Based Concepts and Principles 1798A. General Scheme: Nalewajski’s ChargeSensitivity Analysis1798B. Concepts and Their Calculation 18001. Electronegativity and the ElectronicChemical Potential18002. Global Hardness and Softness 18023. The Electronic Fukui Function, LocalSoftness, and Softness Kernel18074. Local Hardness and Hardness Kernel 18135. The Molecular Shape FunctionsSimilarity 18146. The Nuclear Fukui Function and ItsDerivatives18167. Spin-Polarized Generalizations 18198. Solvent Effects 18209. Time Evolution of Reactivity Indices 1821C. Principles 18221. Sanderson’s Electronegativity EqualizationPrinciple18222. Pearson’s Hard and Soft Acids andBases Principle18253. The Maximum Hardness Principle 1829IV. Applications 1833A. Atoms and Functional Groups 1833B. Molecular Properties 18381. Dipole Moment, Hardness, Softness, andRelated Properties18382. Conformation 18403. Aromaticity 1840C. Reactivity 18421. Introduction 18422. Comparison of Intramolecular ReactivitySequences18443. Comparison of Intermolecular ReactivitySequences18494. Excited States 1857D. Clusters and Catalysis 1858V. Conclusions 1860VI. Glossary of Most Important Symbols andAcronyms1860VII. Acknowledgments 1861VIII. Note Added in Proof 1862IX. References 1865

3,890 citations