Author
Ming-Wei Chang
Other affiliations: Microsoft, National Taiwan University, University of Illinois at Urbana–Champaign
Bio: Ming-Wei Chang is an academic researcher from Google. The author has contributed to research in topic(s): Question answering & Parsing. The author has an hindex of 41, co-authored 98 publication(s) receiving 36404 citation(s). Previous affiliations of Ming-Wei Chang include Microsoft & National Taiwan University.
Papers
More filters
11 Oct 2018-
Abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5 (7.7 point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
24,672 citations
Posted Content•
TL;DR: A new language representation model, BERT, designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.
BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
4,099 citations
TL;DR: The Natural Questions corpus, a question answering data set, is presented, introducing robust metrics for the purposes of evaluating question answering systems; demonstrating high human upper bounds on these metrics; and establishing baseline results using competitive methods drawn from related literature.
Abstract: We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a...
803 citations
TL;DR: How SVM, a new learning technique, is successfully applied to load forecasting is discussed in detail and some important conclusions are that temperature might not be useful in such a mid-term load forecasting problem and that the introduction of time-series concept may improve the forecasting.
Abstract: Load forecasting is usually made by constructing models on relative information, such as climate and previous load demand data. In 2001, EUNITE network organized a competition aiming at mid-term load forecasting (predicting daily maximum load of the next 31 days). During the competition we proposed a support vector machine (SVM) model, which was the winning entry, to solve the problem. In this paper, we discuss in detail how SVM, a new learning technique, is successfully applied to load forecasting. In addition, motivated by the competition results and the approaches by other participants, more experiments and deeper analyses are conducted and presented here. Some important conclusions from the results are that temperature (or other types of climate information) might not be useful in such a mid-term load forecasting problem and that the introduction of time-series concept may improve the forecasting.
654 citations
7
28 Jul 2015-
TL;DR: This work proposes a novel semantic parsing framework for question answering using a knowledge base that leverages the knowledge base in an early stage to prune the search space and thus simplifies the semantic matching problem.
Abstract: We propose a novel semantic parsing framework for question answering using a knowledge base. We define a query graph that resembles subgraphs of the knowledge base and can be directly mapped to a logical form. Semantic parsing is reduced to query graph generation, formulated as a staged search problem. Unlike traditional approaches, our method leverages the knowledge base in an early stage to prune the search space and thus simplifies the semantic matching problem. By applying an advanced entity linking system and a deep convolutional neural network model that matches questions and predicate sequences, our system outperforms previous methods substantially, and achieves an F1 measure of 52.5% on the WEBQUESTIONS dataset.
623 citations
Cited by
More filters
01 Jan 2006-
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
Posted Content•
TL;DR: It is found that BERT was significantly undertrained, and can match or exceed the performance of every model published after it, and the best model achieves state-of-the-art results on GLUE, RACE and SQuAD.
Abstract: Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.
6,623 citations
Proceedings Article•
30 Apr 2020-
TL;DR: This work presents two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT, and uses a self-supervised loss that focuses on modeling inter-sentence coherence.
Abstract: Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations, longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and SQuAD benchmarks while having fewer parameters compared to BERT-large.
2,317 citations
14 Jun 2020-
Abstract: We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder. This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly, the representations learned by MoCo transfer well to downstream tasks. MoCo can outperform its supervised pre-training counterpart in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other datasets, sometimes surpassing it by large margins. This suggests that the gap between unsupervised and supervised representation learning has been largely closed in many vision tasks.
2,261 citations
Posted Content•
TL;DR: The \textit{Transformers} library is an open-source library that consists of carefully engineered state-of-the art Transformer architectures under a unified API and a curated collection of pretrained models made by and available for the community.
Abstract: Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. \textit{Transformers} is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. \textit{Transformers} is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at \url{this https URL}.
1,981 citations