scispace - formally typeset
Search or ask a question
Author

Ming-Yang Kao

Bio: Ming-Yang Kao is an academic researcher from Northwestern University. The author has contributed to research in topics: Time complexity & Planar graph. The author has an hindex of 37, co-authored 202 publications receiving 4438 citations. Previous affiliations of Ming-Yang Kao include Tufts University & Indiana University.


Papers
More filters
Journal ArticleDOI
TL;DR: The inapproximability constant for the triangle packing problem improves upon the previous results and the results on the maximum profit coverage problem provides almost matching upper and lower bounds on the approximation ratio, answering a question posed by Hassin and Or.

10 citations

Posted Content
Ming-Yang Kao1
TL;DR: In this paper, the authors report a master theorem on tight asymptotic solutions to divide-and-conquer recurrences with more than one recursive term: T = 1/4 T(n/16) + 1/3 T(3n/5) + 4 Tn/100 + 10n/300 + n^2.
Abstract: This short note reports a master theorem on tight asymptotic solutions to divide-and-conquer recurrences with more than one recursive term: for example, T(n) = 1/4 T(n/16) + 1/3 T(3n/5) + 4 T(n/100) + 10 T(n/300) + n^2.

10 citations

01 Jan 1996
TL;DR: This work presents a linear-time algorithm for the problem of adding the smallest number of edges to make a bipartite graph componentwise biconnected while preserving its bipartiteness.
Abstract: A graph is componentwise biconnected if every connected component either is an isolated vertex or is biconnected. We present a linear-time algorithm for the problem of adding the smallest number of edges to make a bipartite graph componentwise biconnected while preserving its bipartiteness. This algorithm has immediate applications for protecting sensitive information in statistical tables.

10 citations

Posted Content
TL;DR: In this paper, the authors give an optimal linear-time algorithm for testing whether there exist nontrivial analytic invariants in terms of the suppressed cells in a given set of suppressed cells.
Abstract: To protect sensitive information in a cross tabulated table, it is a common practice to suppress some of the cells in the table. An analytic invariant is a power series in terms of the suppressed cells that has a unique feasible value and a convergence radius equal to +\infty. Intuitively, the information contained in an invariant is not protected even though the values of the suppressed cells are not disclosed. This paper gives an optimal linear-time algorithm for testing whether there exist nontrivial analytic invariants in terms of the suppressed cells in a given set of suppressed cells. This paper also presents NP-completeness results and an almost linear-time algorithm for the problem of suppressing the minimum number of cells in addition to the sensitive ones so that the resulting table does not leak analytic invariant information about a given set of suppressed cells.

10 citations

Book ChapterDOI
08 Jul 2004
TL;DR: In this paper, the authors investigate the test set problem and its variations that appear in a variety of applications and show that the problem is as hard as the graph coloring problem when tests can be formed as unions of basic tests, and establish matching lower and upper bounds on approximation ratio.
Abstract: In this paper, we investigate the test set problem and its variations that appear in a variety of applications. In general, we are given a universe of objects to be “distinguished” by a family of “tests”, and we want to find the smallest sufficient collection of tests. In the simplest version, a test is a subset of the universe and two objects are distinguished by our collection if one test contains exactly one of them. Variations allow tests to be multi-valued functions or unions of “basic” tests, and different notions of the term distinguished. An important version of this problem that has applications in DNA sequence analysis has the universe consisting of strings over a small alphabet and tests that are detecting presence (or absence) of a substring. For most versions of the problem, including the latter, we establish matching lower and upper bounds on approximation ratio. When tests can be formed as unions of basic tests, we show that the problem is as hard as the graph coloring problem.

10 citations


Cited by
More filters
Journal ArticleDOI

3,734 citations

Journal ArticleDOI
03 Jun 2011-Science
TL;DR: This work experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays.
Abstract: To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.

1,249 citations

Journal ArticleDOI
TL;DR: A new de novo sequencing software package, PEAKS, is described, to extract amino acid sequence information without the use of databases, using a new model and a new algorithm to efficiently compute the best peptide sequences whose fragment ions can best interpret the peaks in the MS/MS spectrum.
Abstract: A number of different approaches have been described to identify proteins from tandem mass spectrometry (MS/MS) data. The most common approaches rely on the available databases to match experimental MS/MS data. These methods suffer from several drawbacks and cannot be used for the identification of proteins from unknown genomes. In this communication, we describe a new de novo sequencing software package, PEAKS, to extract amino acid sequence information without the use of databases. PEAKS uses a new model and a new algorithm to efficiently compute the best peptide sequences whose fragment ions can best interpret the peaks in the MS/MS spectrum. The output of the software gives amino acid sequences with confidence scores for the entire sequences, as well as an additional novel positional scoring scheme for portions of the sequences. The performance of PEAKS is compared with Lutefisk, a well-known de novo sequencing software, using quadrupole-time-of-flight (Q-TOF) data obtained for several tryptic peptides from standard proteins.

1,239 citations

Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is suggested that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment.
Abstract: The impressive capabilities of the mammalian brain—ranging from perception, pattern recognition and memory formation to decision making and motor activity control—have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anomaly detection, medical diagnosis and robotic vehicle control Yet before neuron-based brains evolved, complex biomolecular circuits provided individual cells with the ‘intelligent’ behaviour required for survival However, the study of how molecules can ‘think’ has not produced an equal variety of computational models and applications of artificial chemical systems Although biomolecular systems have been hypothesized to carry out neural-network-like computations in vivo and the synthesis of artificial chemical analogues has been proposed theoretically, experimental work has so far fallen short of fully implementing even a single neuron Here, building on the richness of DNA computing and strand displacement circuitry, we show how molecular systems can exhibit autonomous brain-like behaviours Using a simple DNA gate architecture that allows experimental scale-up of multilayer digital circuits, we systematically transform arbitrary linear threshold circuits (an artificial neural network model) into DNA strand displacement cascades that function as small neural networks Our approach even allows us to implement a Hopfield associative memory with four fully connected artificial neurons that, after training in silico, remembers four single-stranded DNA patterns and recalls the most similar one when presented with an incomplete pattern Our results suggest that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment

884 citations