scispace - formally typeset
Search or ask a question
Author

Ming-Yang Kao

Bio: Ming-Yang Kao is an academic researcher from Northwestern University. The author has contributed to research in topics: Time complexity & Planar graph. The author has an hindex of 37, co-authored 202 publications receiving 4438 citations. Previous affiliations of Ming-Yang Kao include Tufts University & Indiana University.


Papers
More filters
Book ChapterDOI
16 Dec 2013
TL;DR: The \(\mathcal{NP}\)-hardness of 29-PATS is proved, where the best known is that of 60-PATs, which is a variant of PATS that restricts input patterns to those with at most k colors.
Abstract: Patterned self-assembly tile set synthesis (PATS) aims at finding a minimum tile set to uniquely self-assemble a given rectangular pattern. For k ≥ 1, k-PATS is a variant of PATS that restricts input patterns to those with at most k colors. We prove the \(\mathcal{NP}\)-hardness of 29-PATS, where the best known is that of 60-PATS.

10 citations

Posted Content
TL;DR: In this paper, the authors proved the hardness of 29-PATS, a variant of PATS that restricts input patterns to those with at most $k$ colors, where k is the number of colors in the input pattern.
Abstract: Patterned self-assembly tile set synthesis (PATS) aims at finding a minimum tile set to uniquely self-assemble a given rectangular color pattern. For $k \ge 1$, $k$-PATS is a variant of PATS that restricts input patterns to those with at most $k$ colors. We prove the {\bf NP}-hardness of 29-PATS, where the best known is that of 60-PATS.

9 citations

Book ChapterDOI
11 Jul 2009
TL;DR: This paper shows that for 0 < D ≤ n 0.294, the problem with the binary alphabet set can be solved within time complexity, and provides an alternative approach not involving algebraic matrix multiplication, which has the time complexity with small constant, and is effective for practical use.
Abstract: Finding the closest pair among a given set of points under Hamming Metric is a fundamental problem with many applications. Let n be the number of points and D the dimensionality of all points. We show that for 0 < D ≤ n 0.294, the problem, with the binary alphabet set, can be solved within time complexity $O\left(n^{2+o(1)}\right)$, whereas for n 0.294 < D ≤ n , it can be solved within time complexity $O\left(n^{1.843} D^{0.533}\right)$. We also provide an alternative approach not involving algebraic matrix multiplication, which has the time complexity $O\left(n^2D/\log^2 D\right)$ with small constant, and is effective for practical use. Moreover, for arbitrary large alphabet set, an algorithm with the time complexity $O\left(n^2\sqrt{D}\right)$ is obtained for 0 < D ≤ n 0.294, whereas the time complexity is $O\left(n^{1.921} D^{0.767}\right)$ for n 0.294 < D ≤ n . In addition, the algorithms propose in this paper provides a solution to the open problem stated by Kao et al.

9 citations

Posted Content
TL;DR: It is shown that the efficient universal portfolio computation technique of Kalai and Vempala involving the sampling of log-concave functions can be generalized to other classes of investment strategies and discussed the runtime efficiency of universalization algorithms.
Abstract: A universalization of a parameterized investment strategy is an online algorithm whose average daily performance approaches that of the strategy operating with the optimal parameters determined offline in hindsight. We present a general framework for universalizing investment strategies and discuss conditions under which investment strategies are universalizable. We present examples of common investment strategies that fit into our framework. The examples include both trading strategies that decide positions in individual stocks, and portfolio strategies that allocate wealth among multiple stocks. This work extends Cover's universal portfolio work. We also discuss the runtime efficiency of universalization algorithms. While a straightforward implementation of our algorithms runs in time exponential in the number of parameters, we show that the efficient universal portfolio computation technique of Kalai and Vempala involving the sampling of log-concave functions can be generalized to other classes of investment strategies.

9 citations


Cited by
More filters
Journal ArticleDOI

3,734 citations

Journal ArticleDOI
03 Jun 2011-Science
TL;DR: This work experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays.
Abstract: To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.

1,249 citations

Journal ArticleDOI
TL;DR: A new de novo sequencing software package, PEAKS, is described, to extract amino acid sequence information without the use of databases, using a new model and a new algorithm to efficiently compute the best peptide sequences whose fragment ions can best interpret the peaks in the MS/MS spectrum.
Abstract: A number of different approaches have been described to identify proteins from tandem mass spectrometry (MS/MS) data. The most common approaches rely on the available databases to match experimental MS/MS data. These methods suffer from several drawbacks and cannot be used for the identification of proteins from unknown genomes. In this communication, we describe a new de novo sequencing software package, PEAKS, to extract amino acid sequence information without the use of databases. PEAKS uses a new model and a new algorithm to efficiently compute the best peptide sequences whose fragment ions can best interpret the peaks in the MS/MS spectrum. The output of the software gives amino acid sequences with confidence scores for the entire sequences, as well as an additional novel positional scoring scheme for portions of the sequences. The performance of PEAKS is compared with Lutefisk, a well-known de novo sequencing software, using quadrupole-time-of-flight (Q-TOF) data obtained for several tryptic peptides from standard proteins.

1,239 citations

Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is suggested that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment.
Abstract: The impressive capabilities of the mammalian brain—ranging from perception, pattern recognition and memory formation to decision making and motor activity control—have inspired their re-creation in a wide range of artificial intelligence systems for applications such as face recognition, anomaly detection, medical diagnosis and robotic vehicle control Yet before neuron-based brains evolved, complex biomolecular circuits provided individual cells with the ‘intelligent’ behaviour required for survival However, the study of how molecules can ‘think’ has not produced an equal variety of computational models and applications of artificial chemical systems Although biomolecular systems have been hypothesized to carry out neural-network-like computations in vivo and the synthesis of artificial chemical analogues has been proposed theoretically, experimental work has so far fallen short of fully implementing even a single neuron Here, building on the richness of DNA computing and strand displacement circuitry, we show how molecular systems can exhibit autonomous brain-like behaviours Using a simple DNA gate architecture that allows experimental scale-up of multilayer digital circuits, we systematically transform arbitrary linear threshold circuits (an artificial neural network model) into DNA strand displacement cascades that function as small neural networks Our approach even allows us to implement a Hopfield associative memory with four fully connected artificial neurons that, after training in silico, remembers four single-stranded DNA patterns and recalls the most similar one when presented with an incomplete pattern Our results suggest that DNA strand displacement cascades could be used to endow autonomous chemical systems with the capability of recognizing patterns of molecular events, making decisions and responding to the environment

884 citations