scispace - formally typeset
Search or ask a question
Author

Ming Yuan

Bio: Ming Yuan is an academic researcher from Columbia University. The author has contributed to research in topics: Estimator & Minimax. The author has an hindex of 46, co-authored 172 publications receiving 15913 citations. Previous affiliations of Ming Yuan include University of Wisconsin-Madison & Georgia Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, instead of selecting factors by stepwise backward elimination, the authors focus on the accuracy of estimation and consider extensions of the lasso, the LARS algorithm and the non-negative garrotte for factor selection.
Abstract: Summary. We consider the problem of selecting grouped variables (factors) for accurate prediction in regression. Such a problem arises naturally in many practical situations with the multifactor analysis-of-variance problem as the most important and well-known example. Instead of selecting factors by stepwise backward elimination, we focus on the accuracy of estimation and consider extensions of the lasso, the LARS algorithm and the non-negative garrotte for factor selection. The lasso, the LARS algorithm and the non-negative garrotte are recently proposed regression methods that can be used to select individual variables. We study and propose efficient algorithms for the extensions of these methods for factor selection and show that these extensions give superior performance to the traditional stepwise backward elimination method in factor selection problems. We study the similarities and the differences between these methods. Simulations and real examples are used to illustrate the methods.

7,400 citations

Journal ArticleDOI
TL;DR: The implementation of the penalized likelihood methods for estimating the concentration matrix in the Gaussian graphical model is nontrivial, but it is shown that the computation can be done effectively by taking advantage of the efficient maxdet algorithm developed in convex optimization.
Abstract: SUMMARY We propose penalized likelihood methods for estimating the concentration matrix in the Gaussian graphical model. The methods lead to a sparse and shrinkage estimator of the concentration matrix that is positive definite, and thus conduct model selection and estimation simultaneously. The implementation of the methods is nontrivial because of the positive definite constraint on the concentration matrix, but we show that the computation can be done effectively by taking advantage of the efficient maxdet algorithm developed in convex optimization. We propose a BIC-type criterion for the selection of the tuning parameter in the penalized likelihood methods. The connection between our methods and existing methods is illustrated. Simulations and real examples demonstrate the competitive performance of the new methods.

1,824 citations

Journal ArticleDOI
TL;DR: In this article, the non-paranormal graphical models are used as a safe replacement of the popular Gaussian graphical models, even when the data are truly Gaussian, for graph recovery and parameter estimation.
Abstract: ing the Spearman’s rho and Kendall’s tau. We prove that the nonparanormal skeptic achieves the optimal parametric rates of convergence for both graph recovery and parameter estimation. This result suggests that the nonparanormal graphical models can be used as a safe replacement of the popular Gaussian graphical models, even when the data are truly Gaussian. Besides theoretical analysis, we also conduct thorough numerical simulations to compare the graph recovery performance of dierent estimators under both ideal and noisy settings. The proposed methods are then applied on a largescale genomic dataset to illustrate their empirical usefulness. The R package huge implementing the proposed methods is available on the Comprehensive R Archive Network: http://cran.r-project.org/.

521 citations

Journal ArticleDOI
TL;DR: In this paper, a new regression method called composite quantile regression (CQR) was proposed, and the authors show that CQR can be much more efficient and sometimes arbitrarily more efficient than least squares.
Abstract: Coefficient estimation and variable selection in multiple linear regression is routinely done in the (penalized) least squares (LS) framework. The concept of model selection oracle introduced by Fan and Li [J. Amer. Statist. Assoc. 96 (2001) 1348--1360] characterizes the optimal behavior of a model selection procedure. However, the least-squares oracle theory breaks down if the error variance is infinite. In the current paper we propose a new regression method called composite quantile regression (CQR). We show that the oracle model selection theory using the CQR oracle works beautifully even when the error variance is infinite. We develop a new oracular procedure to achieve the optimal properties of the CQR oracle. When the error variance is finite, CQR still enjoys great advantages in terms of estimation efficiency. We show that the relative efficiency of CQR compared to the least squares is greater than 70% regardless the error distribution. Moreover, CQR could be much more efficient and sometimes arbitrarily more efficient than the least squares. The same conclusions hold when comparing a CQR-oracular estimator with a LS-oracular estimator.

458 citations

Journal Article
TL;DR: An estimating procedure is proposed that can effectively exploit "sparsity" of the inverse covariance matrix and can be computed using linear programming and therefore has the potential to be used in very high dimensional problems.
Abstract: This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by "sparse" matrices. Taking advantage of the connection between multivariate linear regression and entries of the inverse covariance matrix, we propose an estimating procedure that can effectively exploit such "sparsity". The proposed method can be computed using linear programming and therefore has the potential to be used in very high dimensional problems. Oracle inequalities are established for the estimation error in terms of several operator norms, showing that the method is adaptive to different types of sparsity of the problem.

447 citations


Cited by
More filters
Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

Journal ArticleDOI
TL;DR: In comparative timings, the new algorithms are considerably faster than competing methods and can handle large problems and can also deal efficiently with sparse features.
Abstract: We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multinomial regression problems while the penalties include l(1) (the lasso), l(2) (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

13,656 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Journal ArticleDOI

6,278 citations