scispace - formally typeset
Search or ask a question
Author

Ming Zhu

Bio: Ming Zhu is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Golgi apparatus & Endoplasmic reticulum. The author has an hindex of 7, co-authored 11 publications receiving 676 citations. Previous affiliations of Ming Zhu include Beijing Normal University & McGovern Institute for Brain Research.

Papers
More filters
Journal ArticleDOI
TL;DR: pLink as mentioned in this paper is a software for data analysis of cross-linked proteins coupled with mass-spectrometry analysis, which is compatible with multiple homo- or hetero-bifunctional cross-linkers.
Abstract: pLink, software for data analysis of cross-linked proteins coupled with mass spectrometry, estimates false discovery rate and enables analysis of protein complexes without extensive purification. We have developed pLink, software for data analysis of cross-linked proteins coupled with mass-spectrometry analysis. pLink reliably estimates false discovery rate in cross-link identification and is compatible with multiple homo- or hetero-bifunctional cross-linkers. We validated the program with proteins of known structures, and we further tested it on protein complexes, crude immunoprecipitates and whole-cell lysates. We show that it is a robust tool for protein-structure and protein-protein–interaction studies.

528 citations

Journal ArticleDOI
05 Jul 2019-Science
TL;DR: In budding yeast, it is discovered that the Sec24 paralog Lst1, which forms a COPII cargo adaptor complex with Sec23, is essential for ER-phagy, a disposal pathway that targets ER domains and sequesters them into autophagosomes for delivery to the vacuole or lysosome for degradation.
Abstract: The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.

102 citations

Journal ArticleDOI
18 Nov 2016-eLife
TL;DR: It is proposed that the acute need to produce autophagosomes during starvation drives the interaction of Sec24 with Atg9 to increase autophagy abundance.
Abstract: Endoplasmic Reticulum (ER)-derived COPII coated vesicles constitutively transport secretory cargo to the Golgi. However, during starvation-induced stress, COPII vesicles have been implicated as a membrane source for autophagosomes, distinct organelles that engulf cellular components for degradation by macroautophagy (hereafter called autophagy). How cells regulate core trafficking machinery to fulfill dramatically different cellular roles in response to environmental cues is unknown. Here we show that phosphorylation of conserved amino acids on the membrane-distal surface of the Saccharomyces cerevisiae COPII cargo adaptor, Sec24, reprograms COPII vesicles for autophagy. We also show casein kinase 1 (Hrr25) is a key kinase that phosphorylates this regulatory surface. During autophagy, Sec24 phosphorylation regulates autophagosome number and its interaction with the C-terminus of Atg9, a component of the autophagy machinery required for autophagosome initiation. We propose that the acute need to produce autophagosomes during starvation drives the interaction of Sec24 with Atg9 to increase autophagosome abundance.

66 citations

Journal ArticleDOI
TL;DR: During nutrient deprivation, phosphorylation of the membrane-distal surface of the COPII coat subunit Sec24 facilitates the interaction of Sec24 with the Atg machinery (specifically, Atg9) to regulate the abundance of autophagosomes during starvation.
Abstract: The upregulation of autophagosome formation in response to nutrient deprivation requires significant intracellular membrane rearrangements that are poorly understood. Recent findings have implicated COPII-coated vesicles, well known as ER-Golgi cargo transport carriers, as key players in macroautophagy. The role of COPII vesicles in macroautophagy and how they interact with autophagy-related (Atg) proteins was unknown. In our recent report, we show that during nutrient deprivation, phosphorylation of the membrane-distal surface of the COPII coat subunit Sec24 facilitates the interaction of Sec24 with the Atg machinery (specifically, Atg9) to regulate the abundance of autophagosomes during starvation. Phosphorylation of Sec24 is specifically required for macroautophagy, but not ER-Golgi transport. These findings begin to unravel the unique function of COPII vesicles during starvation-induced macroautophagy.

41 citations

Journal ArticleDOI
21 Nov 2018-eLife
TL;DR: Novel pathways in axon regeneration are reported by extending the previous function-based screen using the C. elegans mechanosensory neuron axotomy model and finding differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axons regrowth.
Abstract: The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The progress of proteomics has been driven by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling for quantification, and bioinformatics data analysis.
Abstract: According to Genome Sequencing Project statistics (http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html), as of Feb 16, 2012, complete gene sequences have become available for 2816 viruses, 1117 prokaryotes, and 36 eukaryotes.1–2 The availability of full genome sequences has greatly facilitated biological research in many fields, and has greatly contributed to the growth of proteomics. Proteins are important because they are the direct bio-functional molecules in the living organisms. The term “proteomics” was coined from merging “protein” and “genomics” in the 1990s.3–4 As a post-genomic discipline, proteomics encompasses efforts to identify and quantify all the proteins of a proteome, including expression, cellular localization, interactions, post-translational modifications (PTMs), and turnover as a function of time, space and cell type, thus making the full investigation of a proteome more challenging than sequencing a genome. There are possibly 100,000 protein forms encoded by the approximate 20,235 genes of the human genome,5 and determining the explicit function of each form will be a challenge. The progress of proteomics has been driven by the development of new technologies for peptide/protein separation, mass spectrometry analysis, isotope labeling for quantification, and bioinformatics data analysis. Mass spectrometry has emerged as a core tool for large-scale protein analysis. In the past decade, there has been a rapid advance in the resolution, mass accuracy, sensitivity and scan rate of mass spectrometers used to analyze proteins. In addition, hybrid mass analyzers have been introduced recently (e.g. Linear Ion Trap-Orbitrap series6–7) which have significantly improved proteomic analysis. “Bottom-up” protein analysis refers to the characterization of proteins by analysis of peptides released from the protein through proteolysis. When bottom-up is performed on a mixture of proteins it is called shotgun proteomics,8–10 a name coined by the Yates lab because of its analogy to shotgun genomic sequencing.11 Shotgun proteomics provides an indirect measurement of proteins through peptides derived from proteolytic digestion of intact proteins. In a typical shotgun proteomics experiment, the peptide mixture is fractionated and subjected to LC-MS/MS analysis. Peptide identification is achieved by comparing the tandem mass spectra derived from peptide fragmentation with theoretical tandem mass spectra generated from in silico digestion of a protein database. Protein inference is accomplished by assigning peptide sequences to proteins. Because peptides can be either uniquely assigned to a single protein or shared by more than one protein, the identified proteins may be further scored and grouped based on their peptides. In contrast, another strategy, termed ‘top-down’ proteomics, is used to characterize intact proteins (Figure 1). The top-down approach has some potential advantages for PTM and protein isoform determination and has achieved notable success. Intact proteins have been measured up to 200 kDa,12 and a large scale study has identified more than 1,000 proteins by multi-dimensional separations from complex samples.13 However, the top-down method has significant limitations compared with shotgun proteomics due to difficulties with protein fractionation, protein ionization and fragmentation in the gas phase. By relying on the analysis of peptides, which are more easily fractionated, ionized and fragmented, shotgun proteomics can be more universally adopted for protein analysis. In fact, a hybrid of bottom-up and top-down methodologies and instrumentation has been introduced as middle-down proteomics.14 Essentially, middle-down proteomics analyzes larger peptide fragments than bottom-up proteomics, minimizing peptide redundancy between proteins. Additionally the large peptide fragments yield similar advantages as top-down proteomics, such as gaining further insight into post-translational modifications, without the analytical challenges of analyzing intact proteins. Shotgun proteomics has become a workhorse for the analysis of proteins and their modifications and will be increasingly combined with top-down methods in the future. Figure 1 Proteomic strategies: bottom-up vs. top-down vs. middle-down. The bottom-up approach analyzes proteolytic peptides. The top-down method measures the intact proteins. The middle-down strategy analyzes larger peptides resulted from limited digestion or ... In the past decade shotgun proteomics has been widely used by biologists for many different research experiments, advancing biological discoveries. Some applications include, but are not limited to, proteome profiling, protein quantification, protein modification, and protein-protein interaction. There have been several reviews nicely summarizing mass spectrometry history,15 protein quantification with mass spectrometry,16 its biological applications,5,17–26 and many recent advances in methodology.27–32 In this review, we try to provide a full and updated survey of shotgun proteomics, including the fundamental techniques and applications that laid the foundation along with those developed and greatly improved in the past several years.

1,184 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
15 Nov 2019-Science
TL;DR: The UPS and autophagy form an interconnected quality control network where decision-making is self-organized on the basis of biophysical parameters (binding affinities, local concentrations, and avidity) and compartmentalization (through membranes, liquid-liquid phase separation, or the formation of aggregates).
Abstract: To achieve homeostasis, cells evolved dynamic and self-regulating quality control processes to adapt to new environmental conditions and to prevent prolonged damage. We discuss the importance of two major quality control systems responsible for degradation of proteins and organelles in eukaryotic cells: the ubiquitin-proteasome system (UPS) and autophagy. The UPS and autophagy form an interconnected quality control network where decision-making is self-organized on the basis of biophysical parameters (binding affinities, local concentrations, and avidity) and compartmentalization (through membranes, liquid-liquid phase separation, or the formation of aggregates). We highlight cellular quality control factors that delineate their differential deployment toward macromolecular complexes, liquid-liquid phase-separated subcellular structures, or membrane-bound organelles. Finally, we emphasize the need for continuous promotion of quantitative and mechanistic research into the roles of the UPS and autophagy in human pathophysiology.

499 citations

Journal ArticleDOI
14 Aug 2014-Nature
TL;DR: A strategy for forming and purifying a functional human β2AR–β-arrestin-1 complex is devised that provides a framework for better understanding the basis of GPCR regulation by arrestins.
Abstract: Single-particle electron microscopy and hydrogen–deuterium exchange mass spectrometry are used to characterize the structure and dynamics of a G-protein-coupled receptor–arrestin complex. Much has been learned about the structure of G-protein-coupled receptors (GCPRs) over the past seven years, but we still don't know what an activated GPCR looks like when it is bound to a β-arrestin. (Arrestins are cellular mediators with a broad range of functions, many of them involving GPCRs.) In this study the authors use single-particle electron microscopy and hydrogen–deuterium exchange mass spectrometry to characterize the structure and dynamics of a GPCR–arrestin complex. Their data support a 'biphasic' mechanism, in which the arrestin initially interacts with the phosphorylated carboxy terminus of the GPCR before re-arranging to more fully engage the membrane protein in a signalling-competent conformation. G-protein-coupled receptors (GPCRs) are critically regulated by β-arrestins, which not only desensitize G-protein signalling but also initiate a G-protein-independent wave of signalling1,2,3,4,5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)–G-protein complex, has provided novel insights into the structural basis of receptor activation6,7,8,9,10,11. However, complementary information has been lacking on the recruitment of β-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor–β-arrestin complexes for structural studies. Here we devised a strategy for forming and purifying a functional human β2AR–β-arrestin-1 complex that allowed us to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between β2AR and β-arrestin 1 using hydrogen–deuterium exchange mass spectrometry (HDX-MS) and chemical crosslinking. Electron microscopy two-dimensional averages and three-dimensional reconstructions reveal bimodal binding of β-arrestin 1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of crosslinked residues suggest engagement of the finger loop of β-arrestin 1 with the seven-transmembrane core of the receptor. In contrast, focal areas of raised HDX levels indicate regions of increased dynamics in both the N and C domains of β-arrestin 1 when coupled to the β2AR. A molecular model of the β2AR–β-arrestin signalling complex was made by docking activated β-arrestin 1 and β2AR crystal structures into the electron microscopy map densities with constraints provided by HDX-MS and crosslinking, allowing us to obtain valuable insights into the overall architecture of a receptor–arrestin complex. The dynamic and structural information presented here provides a framework for better understanding the basis of GPCR regulation by arrestins.

424 citations

Journal ArticleDOI
TL;DR: The machinery of Autophagy, the molecular web that connects autophagy to various stress responses like inflammation, hypoxia, ER stress, and various other pathologic conditions is discussed.

423 citations