scispace - formally typeset
Search or ask a question
Author

Mingkai Zheng

Bio: Mingkai Zheng is an academic researcher. The author has contributed to research in topics: Relation (database) & Feature (machine learning). The author has an hindex of 2, co-authored 8 publications receiving 10 citations.

Papers
More filters
Posted Content
TL;DR: Zhang et al. as mentioned in this paper proposed an architecture search method, dubbed ViTAS, to search for the optimal architecture with similar hardware budgets, such that architectures with different token embedding, sequence size, number of heads, width, and depth can be derived from a single super-transformer.
Abstract: Recently, transformers have shown great superiority in solving computer vision tasks by modeling images as a sequence of manually-split patches with self-attention mechanism. However, current architectures of vision transformers (ViTs) are simply inherited from natural language processing (NLP) tasks and have not been sufficiently investigated and optimized. In this paper, we make a further step by examining the intrinsic structure of transformers for vision tasks and propose an architecture search method, dubbed ViTAS, to search for the optimal architecture with similar hardware budgets. Concretely, we design a new effective yet efficient weight sharing paradigm for ViTs, such that architectures with different token embedding, sequence size, number of heads, width, and depth can be derived from a single super-transformer. Moreover, to cater for the variance of distinct architectures, we introduce \textit{private} class token and self-attention maps in the super-transformer. In addition, to adapt the searching for different budgets, we propose to search the sampling probability of identity operation. Experimental results show that our ViTAS attains excellent results compared to existing pure transformer architectures. For example, with $1.3$G FLOPs budget, our searched architecture achieves $74.7\%$ top-$1$ accuracy on ImageNet and is $2.5\%$ superior than the current baseline ViT architecture. Code is available at \url{this https URL}.

3 citations

Posted Content
TL;DR: In this article, instead of counting on a single supernet, instead of taking their weights for each operation as a dictionary, the operation weight for each path is represented as a convex combination of items in a dictionary with a simplex code.
Abstract: In one-shot weight sharing for NAS, the weights of each operation (at each layer) are supposed to be identical for all architectures (paths) in the supernet. However, this rules out the possibility of adjusting operation weights to cater for different paths, which limits the reliability of the evaluation results. In this paper, instead of counting on a single supernet, we introduce $K$-shot supernets and take their weights for each operation as a dictionary. The operation weight for each path is represented as a convex combination of items in a dictionary with a simplex code. This enables a matrix approximation of the stand-alone weight matrix with a higher rank ($K>1$). A \textit{simplex-net} is introduced to produce architecture-customized code for each path. As a result, all paths can adaptively learn how to share weights in the $K$-shot supernets and acquire corresponding weights for better evaluation. $K$-shot supernets and simplex-net can be iteratively trained, and we further extend the search to the channel dimension. Extensive experiments on benchmark datasets validate that K-shot NAS significantly improves the evaluation accuracy of paths and thus brings in impressive performance improvements.

2 citations

Proceedings Article
01 Jan 2021
TL;DR: Wang et al. as discussed by the authors proposed a weakly supervised contrastive learning framework (WCL) to tackle the problem of class collision by using a graph-based method to explore similar samples and generate a weak label.
Abstract: Unsupervised visual representation learning has gained much attention from the computer vision community because of the recent achievement of contrastive learning. Most of the existing contrastive learning frameworks adopt the instance discrimination as the pretext task, which treating every single instance as a different class. However, such method will inevitably cause class collision problems, which hurts the quality of the learned representation. Motivated by this observation, we introduced a weakly supervised contrastive learning framework (WCL) to tackle this issue. Specifically, our proposed framework is based on two projection heads, one of which will perform the regular instance discrimination task. The other head will use a graph-based method to explore similar samples and generate a weak label, then perform a supervised contrastive learning task based on the weak label to pull the similar images closer. We further introduced a K-Nearest Neighbor based multi-crop strategy to expand the number of positive samples. Extensive experimental results demonstrate WCL improves the quality of self-supervised representations across different datasets. Notably, we get a new state-of-the-art result for semi-supervised learning. With only 1\% and 10\% labeled examples, WCL achieves 65\% and 72\% ImageNet Top-1 Accuracy using ResNet50, which is even higher than SimCLRv2 with ResNet101.

2 citations

Proceedings Article
18 Jul 2021
TL;DR: In this article, instead of counting on a single supernet, instead of taking their weights for each operation as a dictionary, the operation weight for each path is represented as a convex combination of items in a dictionary with a simplex code.
Abstract: In one-shot weight sharing for NAS, the weights of each operation (at each layer) are supposed to be identical for all architectures (paths) in the supernet. However, this rules out the possibility of adjusting operation weights to cater for different paths, which limits the reliability of the evaluation results. In this paper, instead of counting on a single supernet, we introduce $K$-shot supernets and take their weights for each operation as a dictionary. The operation weight for each path is represented as a convex combination of items in a dictionary with a simplex code. This enables a matrix approximation of the stand-alone weight matrix with a higher rank ($K>1$). A \textit{simplex-net} is introduced to produce architecture-customized code for each path. As a result, all paths can adaptively learn how to share weights in the $K$-shot supernets and acquire corresponding weights for better evaluation. $K$-shot supernets and simplex-net can be iteratively trained, and we further extend the search to the channel dimension. Extensive experiments on benchmark datasets validate that K-shot NAS significantly improves the evaluation accuracy of paths and thus brings in impressive performance improvements.

1 citations

Proceedings Article
06 Dec 2021
TL;DR: Li et al. as mentioned in this paper proposed a relational self-supervised learning (ReSSL) framework, which employs sharpened distribution of pairwise similarities among different instances as \textit{relation} metric, which is thus utilized to match the feature embeddings of different augmentations.
Abstract: Self-supervised Learning (SSL) including the mainstream contrastive learning has achieved great success in learning visual representations without data annotations. However, most of methods mainly focus on the instance level information (\ie, the different augmented images of the same instance should have the same feature or cluster into the same class), but there is a lack of attention on the relationships between different instances. In this paper, we introduced a novel SSL paradigm, which we term as relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances. Specifically, our proposed method employs sharpened distribution of pairwise similarities among different instances as \textit{relation} metric, which is thus utilized to match the feature embeddings of different augmentations. Moreover, to boost the performance, we argue that weak augmentations matter to represent a more reliable relation, and leverage momentum strategy for practical efficiency. Experimental results show that our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency. Code is available at \url{this https URL}.

1 citations


Cited by
More filters
Posted Content
TL;DR: Transformer as mentioned in this paper is a type of deep neural network mainly based on the self-attention mechanism, which has been applied to the field of natural language processing, and has received more and more attention from the computer vision community.
Abstract: Transformer, first applied to the field of natural language processing, is a type of deep neural network mainly based on the self-attention mechanism. Thanks to its strong representation capabilities, researchers are looking at ways to apply transformer to computer vision tasks. In a variety of visual benchmarks, transformer-based models perform similar to or better than other types of networks such as convolutional and recurrent networks. Given its high performance and less need for vision-specific inductive bias, transformer is receiving more and more attention from the computer vision community. In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages. The main categories we explore include the backbone network, high/mid-level vision, low-level vision, and video processing. We also include efficient transformer methods for pushing transformer into real device-based applications. Furthermore, we also take a brief look at the self-attention mechanism in computer vision, as it is the base component in transformer. Toward the end of this paper, we discuss the challenges and provide several further research directions for vision transformers.

36 citations

Posted Content
TL;DR: GreedyNASv2 as discussed by the authors leverages an explicit path filter to capture the characteristics of paths and directly filter those weak ones, so that the search can be thus implemented on the shrunk space more greedily and efficiently.
Abstract: Training a good supernet in one-shot NAS methods is difficult since the search space is usually considerably huge (\eg, $13^{21}$). In order to enhance the supernet's evaluation ability, one greedy strategy is to sample good paths, and let the supernet lean towards the good ones and ease its evaluation burden as a result. However, in practice the search can be still quite inefficient since the identification of good paths is not accurate enough and sampled paths still scatter around the whole search space. In this paper, we leverage an explicit path filter to capture the characteristics of paths and directly filter those weak ones, so that the search can be thus implemented on the shrunk space more greedily and efficiently. Concretely, based on the fact that good paths are much less than the weak ones in the space, we argue that the label of ``weak paths" will be more confident and reliable than that of ``good paths" in multi-path sampling. In this way, we thus cast the training of path filter in the positive and unlabeled (PU) learning paradigm, and also encourage a \textit{path embedding} as better path/operation representation to enhance the identification capacity of the learned filter. By dint of this embedding, we can further shrink the search space by aggregating similar operations with similar embeddings, and the search can be more efficient and accurate. Extensive experiments validate the effectiveness of the proposed method GreedyNASv2. For example, our obtained GreedyNASv2-L achieves $81.1\%$ Top-1 accuracy on ImageNet dataset, significantly outperforming the ResNet-50 strong baselines.

1 citations

Posted Content
TL;DR: Solo-learn as discussed by the authors is a library of self-supervised methods for visual representation learning implemented in Python, using pytorch and Pytorch lightning, and it fits both research and industry needs by featuring distributed training pipelines with mixed-precision, faster data loading via Nvidia DALI.
Abstract: This paper presents solo-learn, a library of self-supervised methods for visual representation learning. Implemented in Python, using Pytorch and Pytorch lightning, the library fits both research and industry needs by featuring distributed training pipelines with mixed-precision, faster data loading via Nvidia DALI, online linear evaluation for better prototyping, and many additional training tricks. Our goal is to provide an easy-to-use library comprising a large amount of Self-supervised Learning (SSL) methods, that can be easily extended and fine-tuned by the community. solo-learn opens up avenues for exploiting large-budget SSL solutions on inexpensive smaller infrastructures and seeks to democratize SSL by making it accessible to all. The source code is available at this https URL.
Posted Content
TL;DR: Wang et al. as mentioned in this paper proposed a weakly supervised contrastive learning framework (WCL) to tackle the problem of class collision by using a graph-based method to explore similar samples and generate a weak label.
Abstract: Unsupervised visual representation learning has gained much attention from the computer vision community because of the recent achievement of contrastive learning. Most of the existing contrastive learning frameworks adopt the instance discrimination as the pretext task, which treating every single instance as a different class. However, such method will inevitably cause class collision problems, which hurts the quality of the learned representation. Motivated by this observation, we introduced a weakly supervised contrastive learning framework (WCL) to tackle this issue. Specifically, our proposed framework is based on two projection heads, one of which will perform the regular instance discrimination task. The other head will use a graph-based method to explore similar samples and generate a weak label, then perform a supervised contrastive learning task based on the weak label to pull the similar images closer. We further introduced a K-Nearest Neighbor based multi-crop strategy to expand the number of positive samples. Extensive experimental results demonstrate WCL improves the quality of self-supervised representations across different datasets. Notably, we get a new state-of-the-art result for semi-supervised learning. With only 1\% and 10\% labeled examples, WCL achieves 65\% and 72\% ImageNet Top-1 Accuracy using ResNet50, which is even higher than SimCLRv2 with ResNet101.
Posted Content
TL;DR: GenNAS as discussed by the authors adopts a self-supervised regression task to evaluate the intrinsic power of an architecture to capture and transform the input signal patterns, and then proposes an automatic task search to optimize the combination of synthetic signals using limited downstream-task-specific labels.
Abstract: Most existing neural architecture search (NAS) algorithms are dedicated to the downstream tasks, e.g., image classification in computer vision. However, extensive experiments have shown that, prominent neural architectures, such as ResNet in computer vision and LSTM in natural language processing, are generally good at extracting patterns from the input data and perform well on different downstream tasks. These observations inspire us to ask: Is it necessary to use the performance of specific downstream tasks to evaluate and search for good neural architectures? Can we perform NAS effectively and efficiently while being agnostic to the downstream task? In this work, we attempt to affirmatively answer the above two questions and improve the state-of-the-art NAS solution by proposing a novel and generic NAS framework, termed Generic NAS (GenNAS). GenNAS does not use task-specific labels but instead adopts \textit{regression} on a set of manually designed synthetic signal bases for architecture evaluation. Such a self-supervised regression task can effectively evaluate the intrinsic power of an architecture to capture and transform the input signal patterns, and allow more sufficient usage of training samples. We then propose an automatic task search to optimize the combination of synthetic signals using limited downstream-task-specific labels, further improving the performance of GenNAS. We also thoroughly evaluate GenNAS's generality and end-to-end NAS performance on all search spaces, which outperforms almost all existing works with significant speedup.