scispace - formally typeset
Search or ask a question
Author

Mingkui Wang

Bio: Mingkui Wang is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Perovskite (structure) & Dye-sensitized solar cell. The author has an hindex of 66, co-authored 339 publications receiving 19137 citations. Previous affiliations of Mingkui Wang include Chinese Academy of Sciences & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: Two new heteroleptic polypyridyl ruthenium complexes are reported with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell.
Abstract: We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the π-conjugation of spectator ligands, with a motivation t...

1,297 citations

Journal ArticleDOI
11 Sep 2009-ACS Nano
TL;DR: A high molar extinction coefficient heteroleptic ruthenium complex, incorporating an electron-rich hexylthio-terminal chain, has been synthesized and demonstrated as an efficient sensitizer for dye-sensitized solar cells.
Abstract: A high molar extinction coefficient heteroleptic ruthenium complex, incorporating an electron-rich hexylthio-terminal chain, has been synthesized and demonstrated as an efficient sensitizer for dye...

1,178 citations

Journal ArticleDOI
TL;DR: An efficient nonplatinized flexible counter electrode for dye-sensitized solar cells using an amphiphilic ruthenium polypyridyl photosensitizer with higher electrocatalytic activity for the reduction of triiodide is reported.
Abstract: We report an efficient nonplatinized flexible counter electrode for dye-sensitized solar cells. In combination with a solvent-free ionic liquid electrolyte, we have demonstrated a ∼6.5% cell with an amphiphilic ruthenium polypyridyl photosensitizer showing excellent stability measured under prolonged light soaking at 60 °C. Compared to the Pt deposited PEN film, the CoS deposited PEN film shows higher electrocatalytic activity for the reduction of triiodide. This is expected to have an important practical consequence on the production of flexible low-cost and lightweight thin film DSC devices based on the plastic matrix.

855 citations

Journal ArticleDOI
TL;DR: Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding Cd selenideQD cells.
Abstract: In pursuit of efficient quantum dot (QD)-sensitized solar cells based on mesoporous TiO2 photoanodes, a new procedure for preparing selenide (Se2−) was developed and used for depositing CdSe QDs in situ over TiO2 mesopores by the successive ionic layer adsorption and reaction (SILAR) process in ethanol. The sizes and density of CdSe QDs over TiO2 were controlled by the number of SILAR cycles applied. After some optimization of these QD-sensitized TiO2 films in regenerative photoelectrochemical cells using a cobalt redox couple [Co(o-phen)32+/3+], including addition of a final layer of CdTe, over 4% overall efficiencies were achieved at 100 W/m2 with about 50% IPCE at its maximum. Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding CdSe QD cells. In a preliminary study, a CdSe(Te) QD-sensitized TiO2 film was combined with an organic hole conductor, spi...

622 citations

Journal ArticleDOI
TL;DR: The concept of using eutectic melts to produce solvent-free liquid redox electrolytes to produce mesoscopic DSCs is introduced and excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination are reached.
Abstract: The presence of organic solvents in solar cells has hindered the application of devices, especially in flexible cells. Now, by mixing three solid salts, a solvent-free liquid electrolyte for dye-sensitized solar cells has been discovered that shows both excellent efficiency and stability. Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell1 (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability3. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids4,5,6,7,8,9,10,11 have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate8, selenocyanate9, tricyanomethide10 or tetracyanoborate11. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

617 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations