scispace - formally typeset
Search or ask a question
Author

Minglei Sun

Bio: Minglei Sun is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Graphene & van der Waals force. The author has an hindex of 36, co-authored 69 publications receiving 2976 citations. Previous affiliations of Minglei Sun include Agency for Science, Technology and Research & Institute of High Performance Computing Singapore.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A type-II band alignment and a large built-in electric field are formed at the MoS2/ZnO interface, which ensure the enhanced separation of the photogenerated electron-hole pairs, indicating that it has potential for application in photovoltaic and photocatalytic devices.
Abstract: Previous investigations [H. L. Zhuang and R. G. Hennig, J. Phys. Chem. C, 2013, 117, 20440-20445; J. Kang, S. Tongay, J. Zhou, J. Li and J. Wu, Appl. Phys. Lett., 2013, 102, 012111] demonstrated that molybdenum disulfide (MoS2) is a potential photocatalyst for water splitting. However, the photogenerated electron-hole pairs in MoS2 remain in the same spatial regions, resulting in a high rate of recombination. Using first-principles calculations, we designed a MoS2-based heterostructure by stacking MoS2 on two-dimensional zinc oxide (ZnO) and investigated its structural, electronic, and optical properties. The interaction at the MoS2/ZnO interface was found to be dominated by van der Waals (vdW) forces. The energy levels of both water oxidation and reduction lie within the bandgap of the MoS2/ZnO vdW heterostructure, which guarantee their occurrence for water splitting. Moreover, a type-II band alignment and a large built-in electric field are formed at the MoS2/ZnO interface, which ensure the enhanced separation of the photogenerated electron-hole pairs. In addition, strong optical absorption in the visible region was also found in the MoS2/ZnO vdW heterostructure, indicating that it has potential for application in photovoltaic and photocatalytic devices.

275 citations

Journal ArticleDOI
TL;DR: The results showed that the semiconducting nature of BlueP and the Dirac cone of G are well preserved in the BlueP/G vdW heterostructure, and it was discovered that both G and g-GaN can be used as an active layer for BlueP to facilitate charge injection and enhance the device performance.
Abstract: Blue phosphorene (BlueP) is a graphene-like phosphorus nanosheet which was synthesized very recently for the first time [Nano Lett., 2016, 16, 4903-4908]. The combination of electronic properties of two different two-dimensional materials in an ultrathin van der Waals (vdW) vertical heterostructure has been proved to be an effective approach to the design of novel electronic and optoelectronic devices. Therefore, we used density functional theory to investigate the structural and electronic properties of two BlueP-based heterostructures - BlueP/graphene (BlueP/G) and BlueP/graphene-like gallium nitride (BlueP/g-GaN). Our results showed that the semiconducting nature of BlueP and the Dirac cone of G are well preserved in the BlueP/G vdW heterostructure. Moreover, by applying a perpendicular electric field, it is possible to tune the position of the Dirac cone of G with respect to the band edge of BlueP, resulting in the ability to control the Schottky barrier height. For the BlueP/g-GaN vdW heterostructure, BlueP forms an interface with g-GaN with a type-II band alignment, which is a promising feature for unipolar electronic device applications. Furthermore, we discovered that both G and g-GaN can be used as an active layer for BlueP to facilitate charge injection and enhance the device performance.

177 citations

Journal ArticleDOI
TL;DR: In this article, the electronic properties of graphene/g-GaN van der Waals (vdW) heterostructures were investigated using first-principles calculations.
Abstract: Using first-principles calculations, we systematically investigated the electronic properties of graphene/g-GaN van der Waals (vdW) heterostructures. We discovered that the Dirac cone of graphene could be quite well preserved in the vdW heterostructures. Moreover, a transition from an n-type to p-type Schottky contact at the graphene/g-GaN interface was induced with a decreased interlayer distance from 4.5 to 2.5 A. This relationship is expected to enable effective control of the Schottky barrier, which is an important development in the design of Schottky devices.

170 citations

Journal ArticleDOI
TL;DR: All heterostructures formed by transition metal dichalcogenides MX2 and graphene-like zinc oxide exhibit excellent optical absorption in the visible and infrared regions, which is vital for optical applications.
Abstract: The structural, electronic, and optical properties of heterostructures formed by transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se) and graphene-like zinc oxide (ZnO) were investigated using first-principles calculations. The interlayer interaction in all heterostructures was characterized by van der Waals forces. Type-II band alignment occurs at the MoS2/ZnO and WS2/ZnO interfaces, together with the large built-in electric field across the interface, suggesting effective photogenerated-charge separation. Meanwhile, type-I band alignment occurs at the MoSe2/ZnO and WSe2/ZnO interfaces. Moreover, all heterostructures exhibit excellent optical absorption in the visible and infrared regions, which is vital for optical applications.

168 citations

Journal ArticleDOI
TL;DR: A new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs using self-assembled supermolecule precursors derived from pyromellitic acid and melamine, which endow 3D-NTCs with remarkable performances as PIB anodes.
Abstract: Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g-1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries.

160 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this review, the latest theoretical and experimental progress made in the fundamental properties, fabrications and applications of 2D group-VA materials are explored, and perspectives and challenges for the future of this emerging field are offered.
Abstract: Phosphorene, an emerging two-dimensional material, has received considerable attention due to its layer-controlled direct bandgap, high carrier mobility, negative Poisson's ratio and unique in-plane anisotropy. As cousins of phosphorene, 2D group-VA arsenene, antimonene and bismuthene have also garnered tremendous interest due to their intriguing structures and fascinating electronic properties. 2D group-VA family members are opening up brand-new opportunities for their multifunctional applications encompassing electronics, optoelectronics, topological spintronics, thermoelectrics, sensors, Li- or Na-batteries. In this review, we extensively explore the latest theoretical and experimental progress made in the fundamental properties, fabrications and applications of 2D group-VA materials, and offer perspectives and challenges for the future of this emerging field.

689 citations

Posted Content
TL;DR: In this article, a novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized.
Abstract: A novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe2 the top layer of selenium atoms are substituted by sulfur atoms while the bottom selenium layer remains intact. The peculiar structure of this new material is systematically investigated by Raman, photoluminescence and X-ray photoelectron spectroscopy and confirmed by transmission-electron microscopy and time-of-flight secondary ion mass spectrometry. Density-functional theory calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction (HER) activity is discovered for the Janus monolayer and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

649 citations

Journal Article
TL;DR: In this paper, the authors demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition.
Abstract: Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.

439 citations

01 Dec 2009
TL;DR: In this article, the authors describe experimental signatures of Majorana fermion edge states, which form at the interface between a superconductor and the surface of a topological insulator.
Abstract: We describe experimental signatures of Majorana fermion edge states, which form at the interface between a superconductor and the surface of a topological insulator. If a lead couples to the Majorana fermions through electron tunneling, the Majorana fermions induce resonant Andreev reflections from the lead to the grounded superconductor. The linear tunneling conductance is 0 (2e(2)/h) if there is an even (odd) number of vortices in the superconductor. Similar resonance occurs for tunneling into the zero mode in the vortex core. We also study the current and noise of a two-lead device.

392 citations