scispace - formally typeset
Search or ask a question
Author

Mingwei Zhu

Other affiliations: Nanjing University
Bio: Mingwei Zhu is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Cellulose & Nanofiber. The author has an hindex of 16, co-authored 19 publications receiving 2475 citations. Previous affiliations of Mingwei Zhu include Nanjing University.

Papers
More filters
Journal ArticleDOI
07 Feb 2018-Nature
TL;DR: A simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability is reported.
Abstract: Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites) Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres This strategy is shown to be universally effective for various species of wood Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative

830 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors designed a novel type of plasmonic material, which is made by uniformly decorating fine metal nanoparticles into the 3D mesoporous matrix of natural wood.
Abstract: Plasmonic metal nanoparticles are a category of plasmonic materials that can efficiently convert light into heat under illumination, which can be applied in the field of solar steam generation. Here, this study designs a novel type of plasmonic material, which is made by uniformly decorating fine metal nanoparticles into the 3D mesoporous matrix of natural wood (plasmonic wood). The plasmonic wood exhibits high light absorption ability (≈99%) over a broad wavelength range from 200 to 2500 nm due to the plasmonic effect of metal nanoparticles and the waveguide effect of microchannels in the wood matrix. The 3D mesoporous wood with numerous low-tortuosity microchannels and nanochannels can transport water up from the bottom of the device effectively due to the capillary effect. As a result, the 3D aligned porous architecture can achieve a high solar conversion efficiency of 85% under ten-sun illumination (10 kW m−2). The plasmonic wood also exhibits superior stability for solar steam generation, without any degradation after being evaluated for 144 h. Its high conversion efficiency and excellent cycling stability demonstrate the potential of newly developed plasmonic wood to solar energy-based water desalination.

623 citations

Journal ArticleDOI
TL;DR: The tree-inspired design offers an inexpensive and scalable solar energy harvesting and steam generation technology that can provide clean water globally, especially for rural or remote areas where water is not only scarce but also limited by water extraction materials and methods.
Abstract: The solar steam process, akin to the natural water cycle, is considered to be an attractive approach to address water scarcity issues globally. However, water extraction from groundwater, for example, has not been demonstrated using these existing technologies. Additionally, there are major unaddressed challenges in extracting potable water from seawater including salt accumulation and long-term evaporation stability, which warrant further investigation. Herein, a high-performance solar steam device composed entirely of natural wood is reported. The pristine, natural wood is cut along the transverse direction and the top surface is carbonized to create a unique bilayer structure. This tree-inspired design offers distinct advantages for water extraction, including rapid water transport and evaporation in the mesoporous wood, high light absorption (≈99%) within the surface carbonized open wood channels, a low thermal conductivity to avoid thermal loss, and cost effectiveness. The device also exhibits long-term stability in seawater without salt accumulation as well as high performance for underground water extraction. The tree-inspired design offers an inexpensive and scalable solar energy harvesting and steam generation technology that can provide clean water globally, especially for rural or remote areas where water is not only scarce but also limited by water extraction materials and methods.

443 citations

Journal ArticleDOI
06 Apr 2017-ACS Nano
TL;DR: The mesoporous, three-dimensional (3D) wood membrane decorated with palladium nanoparticles (Pd NPs/wood membrane) exhibits promising results for wastewater treatment and is applicable for an even wider range of separation applications.
Abstract: Wood, an earth-abundant material, is widely used in our everyday life. With its mesoporous structure, natural wood is comprised of numerous long, partially aligned channels (lumens) as well as nanochannels that stretch along its growth direction. This wood mesostructure is suitable for a range of emerging applications, especially as a membrane/separation material. Here, we report a mesoporous, three-dimensional (3D) wood membrane decorated with palladium nanoparticles (Pd NPs/wood membrane) for efficient wastewater treatment. The 3D Pd NPs/wood membrane possesses the following advantages: (1) the uniformly distributed lignin within the wood mesostructure can effectively reduce Pd(II) ions to Pd NPs; (2) cellulose, with its abundant hydroxyl groups, can immobilize Pd NPs; (3) the partially aligned mesoporous wood channels as well as their inner ingenious microstructures increase the likelihood of wastewater contacting Pd NPs decorating the wood surface; (4) the long, Pd NP-decorated channels facilitate bul...

346 citations

Journal ArticleDOI
TL;DR: In this article, a self-standing porous carbon anode from natural wood for SIBs was presented, which achieved a capacity of 13.6 mAh cm-2 when the thickness reached 0.85 mm.
Abstract: Sodium-ion batteries (SIBs) have attracted extensive interest in the past few years because of the low cost and abundance of sodium resources and hence the potential for grid scale energy storage. Developing low cost electrode materials, particularly anode materials, is the key for further promoting the application of SIBs. Here, we for the first time report a self-standing porous carbon anode directly from natural wood for SIBs, which processes following advantages: (i) ultra-thick carbon anode with a high areal capacity, for example a capacity of 13.6 mAh cm-2 was delivered when the thickness reached 0.85 mm; (ii) low tortuosity, where numerous inherited aligned channels in the wood carbon provide a rapid ion transport path; (iii) porous nature enables a fast ion transfer between the carbon electrode and the electrolyte; (iv) 100% utilization of the wood carbon that conductive additives, binders, and current-collectors are not needed; v) when coupling a Na3V2(PO4)3 cathode with the wood carbon anode, a high capacity of 80 mAh g-1 was obtained at 0.5 C rate (base on cathode) and excellent cycling stability of 300 cycles was also achieved, which demonstrated the promising performance of earth-abundant wood derived carbon material.

235 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

3,009 citations

Journal ArticleDOI
TL;DR: Tao et al. as discussed by the authors discuss the development of the key components for achieving high-performance evaporation, including solar absorbers and structures, thermal insulators and thermal concentrators.
Abstract: As a ubiquitous solar-thermal energy conversion process, solar-driven evaporation has attracted tremendous research attention owing to its high conversion efficiency of solar energy and transformative industrial potential. In recent years, solar-driven interfacial evaporation by localization of solar-thermal energy conversion to the air/liquid interface has been proposed as a promising alternative to conventional bulk heating-based evaporation, potentially reducing thermal losses and improving energy conversion efficiency. In this Review, we discuss the development of the key components for achieving high-performance evaporation, including solar absorbers, evaporation structures, thermal insulators and thermal concentrators, and discuss how they improve the performance of the solar-driven interfacial evaporation system. We describe the possibilities for applying this efficient solar-driven interfacial evaporation process for energy conversion applications. The exciting opportunities and challenges in both fundamental research and practical implementation of the solar-driven interfacial evaporation process are also discussed. The thermal properties of solar energy can be exploited for many applications, including evaporation. Tao et al. review recent developments in the field of solar-driven interfacial evaporation, which have enabled higher-performance structures by localizing energy conversion to the air/liquid interface.

1,139 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive review on the current development in efficient photothermal evaporation, and suggest directions to further enhance its overall efficiency through the judicious choice of materials and system designs, while synchronously capitalizing waste energy to realize concurrent clean water and energy production.
Abstract: Photothermal materials with broad solar absorption and high conversion efficiency have recently attracted significant interest. They are becoming a fast-growing research focus in the area of solar-driven vaporization for clean water production. The parallel development of thermal management strategies through both material and system designs has further improved the overall efficiency of solar vaporization. Collectively, this green solar-driven water vaporization technology has regained attention as a sustainable solution for water scarcity. In this review, we will report the recent progress in solar absorber material design based on various photothermal conversion mechanisms, evaluate the prerequisites in terms of optical, thermal and wetting properties for efficient solar-driven water vaporization, classify the systems based on different photothermal evaporation configurations and discuss other correlated applications in the areas of desalination, water purification and energy generation. This article aims to provide a comprehensive review on the current development in efficient photothermal evaporation, and suggest directions to further enhance its overall efficiency through the judicious choice of materials and system designs, while synchronously capitalizing waste energy to realize concurrent clean water and energy production.

1,061 citations

Journal ArticleDOI
TL;DR: The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies.
Abstract: With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interes...

1,031 citations