scispace - formally typeset
Search or ask a question
Author

Mingzhe Rong

Bio: Mingzhe Rong is an academic researcher from Xi'an Jiaotong University. The author has contributed to research in topics: Circuit breaker & Arc (geometry). The author has an hindex of 30, co-authored 316 publications receiving 3673 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, revealing that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3.
Abstract: Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

207 citations

Journal ArticleDOI
TL;DR: In this paper, the adsorption of SF6 and SF6 decomposition gases (SO2 and H2 S) on phosphorene was investigated to diagnose the state of online gas insulated switchgear (GIS).
Abstract: Phosphorene is a promising candidate for gas sensing materials. This letter describes our study of the adsorption of SF6 and SF6 decomposition gases (SO2 and H2 S) on phosphorene. We used first principles calculations to explore phosphorene’s potential applications as gas sensor to diagnose the state of online gas insulated switchgear (GIS). The calculation results showed that only the adsorption of SO2 induced a moderate adsorption energy and apparent charge transfer. We further investigated the current–voltage ( ${I}$ – ${V}$ ) relationships before and after gas absorption through the non-equilibrium Green’s function method. It was found that only SO2 induced a dramatic change in the ${I}$ – ${V}$ relationships. Therefore, phosphorene appears to be a promising candidate for highly sensitive and selective SF6 decomposition gas sensors for online GIS diagnosis.

132 citations

Journal ArticleDOI
TL;DR: In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules.
Abstract: Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium–oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion–ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He–O2 plasmas for excited atomic oxygen based chemistry.

119 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the air arc modeling and measurement in low-voltage dc circuit breakers, focusing on the modelling and measurement of these phases.
Abstract: As one of the most important electrical components, the low-voltage circuit breaker (LVCB) has been widely used for protection in all types of low-voltage distribution systems. In particular, the low-voltage dc circuit breaker has been arousing great research interest in recent years. In this type of circuit breaker, an air arc is formed in the interrupting process which is a 3D transient arc in a complex chamber geometry with splitter plates. Controlling the arc evolution and the extinction are the most significant problems. This paper reviews published research works referring to LVCB arcs. Based on the working principle, the arcing process is divided into arc commutation, arc motion and arc splitting; we focus our attention on the modelling and measurement of these phases. In addition, previous approaches in papers of the critical physical phenomenon treatment are discussed, such as radiation, metal erosion, wall ablation and turbulence in the air arc. Recommendations for air arc modelling and measurement are presented for further investigation.

107 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art of this multidisciplinary area and identifying the key research challenges is provided in this paper, where the developments in diagnostics, modeling and further extensions of cross section and reaction rate databases are discussed.
Abstract: Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas.

1,078 citations

Journal ArticleDOI
TL;DR: In this paper, the most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric pressure plasms are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields.

825 citations

Journal Article
TL;DR: This paper discusses how and why wrinkles/buckles form in various materials, and describes several examples from everyday life that demonstrate that wrinkling or buckling is indeed a commonplace phenomenon that spans a multitude of length scales.
Abstract: The English-language dictionary defines wrinkles as "small furrows, ridges, or creases on a normally smooth surface, caused by crumpling, folding, or shrinking". In this paper we review the scientific aspects of wrinkling and the related phenomenon of buckling. Specifically, we discuss how and why wrinkles/buckles form in various materials. We also describe several examples from everyday life, which demonstrate that wrinkling or buckling is indeed a commonplace phenomenon that spans a multitude of length scales. We will emphasize that wrinkling is not always a frustrating feature (e.g., wrinkles in human skin), as it can help to assemble new structures, understand important physical phenomena, and even assist in characterizing chief material properties.

670 citations