scispace - formally typeset
Search or ask a question
Author

Minhua Chen

Bio: Minhua Chen is an academic researcher from Southeast University. The author has contributed to research in topics: Thermal conductivity & Phonon. The author has an hindex of 9, co-authored 15 publications receiving 563 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the dependence of superlattice thermal conductivity on period length is investigated by molecular dynamics simulation, and the simulation results are consistent with phonon transmission coefficient calculations, which indicate increased stop bandwidth and thus strongly enhanced Bragg scattering.
Abstract: The dependence of superlattice thermal conductivity on period length is investigated by molecular dynamics simulation. For perfectly lattice matched superlattices, a minimum is observed when the period length is of the order of the effective phonon mean free path. As temperature decreases and interatomic potential strength increases, the position of the minimum shifts to larger period lengths. The depth of the minimum is strongly enhanced as mass and interatomic potential ratios of the constituent materials increase. The simulation results are consistent with phonon transmission coefficient calculations, which indicate increased stop bandwidth and thus strongly enhanced Bragg scattering for the same conditions under which strong reductions in thermal conductivity are found. When nonideal interfaces are created by introducing a 4% lattice mismatch, the minimum disappears and thermal conductivity increases monotonically with period length. This result may explain why minimum thermal conductivity has not been observed in a large number of experimental studies.

192 citations

Journal ArticleDOI
Zhiyong Wei1, Zhonghua Ni1, Kedong Bi1, Minhua Chen1, Yunfei Chen1 
01 Jul 2011-Carbon
TL;DR: In this article, the in-plane lattice thermal conductivities of a single layer and multilayer graphene films were investigated using nonequilibrium molecular dynamics simulations and it was shown that increasing the bonding strength between neighboring layers will reduce the inplane thermal conductivity for multi-layer graphene films.

167 citations

Journal ArticleDOI
Zhiyong Wei1, Zhonghua Ni1, Kedong Bi1, Minhua Chen1, Yunfei Chen1 
TL;DR: In this article, the crossplane thermal conductivities of multilayer graphene were investigated using nonequilibrium molecular dynamics simulation and it was found that the interfacial thermal resistance in multillayer graphene structures is strongly layer number dependent.

88 citations

Journal ArticleDOI
Kedong Bi1, Yunfei Chen1, Juekuan Yang1, Yujuan Wang1, Minhua Chen1 
TL;DR: In this article, the thermal conductivity of single-wall carbon nanotubes (SWNTs) was investigated based on equilibrium molecular dynamics (EMD) simulation method, and the results showed that vacancy scattering on phonons is stronger than the isotopic atom doing at the same concentration.

68 citations

Journal ArticleDOI
Zan Wang1, Zhonghua Ni1, Ruijie Zhao1, Minhua Chen1, Kedong Bi1, Yunfei Chen1 
TL;DR: In this paper, the roughness effects on phonon transport in Si nanowires (NWs) were considered and an indirect Monte Carlo (MC) simulation was carried out to predict the lattice thermal conductivities of the NWs with different surface qualities.
Abstract: A theoretic model is presented to take into account the roughness effects on phonon transport in Si nanowires (NWs). Based on the roughness model, an indirect Monte Carlo (MC) simulation is carried out to predict the lattice thermal conductivities of the NWs with different surface qualities. Through fitting the experimental data with the MC predictions, the scattering strength on phonons from the boundary, umklapp phonon–phonon processes and impurities can be estimated. It is found that the scattering on phonons by the roughness cell boundaries in a rough nanowire can reduce the phonon mean free path to be smaller than the nanowire diameter, the Casimir limit of the phonon mean free path in a flat nanowire for phonons engaged in completely diffused boundary scattering processes.

24 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce the principles and present status of bulk nanostructured materials, then describe some of the unanswered questions about carrier transport and how current research is addressing these questions.
Abstract: Thermoelectrics have long been recognized as a potentially transformative energy conversion technology due to their ability to convert heat directly into electricity. Despite this potential, thermoelectric devices are not in common use because of their low efficiency, and today they are only used in niche markets where reliability and simplicity are more important than performance. However, the ability to create nanostructured thermoelectric materials has led to remarkable progress in enhancing thermoelectric properties, making it plausible that thermoelectrics could start being used in new settings in the near future. Of the various types of nanostructured materials, bulk nanostructured materials have shown the most promise for commercial use because, unlike many other nanostructured materials, they can be fabricated in large quantities and in a form that is compatible with existing thermoelectric device configurations. The first generation of these materials is currently being developed for commercialization, but creating the second generation will require a fundamental understanding of carrier transport in these complex materials which is presently lacking. In this review we introduce the principles and present status of bulk nanostructured materials, then describe some of the unanswered questions about carrier transport and how current research is addressing these questions. Finally, we discuss several research directions which could lead to the next generation of bulk nanostructured materials.

1,742 citations

Journal ArticleDOI
20 Apr 2010
TL;DR: The physics behind this large resistivity contrast between the amorphous and crystalline states in phase change materials is presented and how it is being exploited to create high density PCM is described.
Abstract: In this paper, recent progress of phase change memory (PCM) is reviewed. The electrical and thermal properties of phase change materials are surveyed with a focus on the scalability of the materials and their impact on device design. Innovations in the device structure, memory cell selector, and strategies for achieving multibit operation and 3-D, multilayer high-density memory arrays are described. The scaling properties of PCM are illustrated with recent experimental results using special device test structures and novel material synthesis. Factors affecting the reliability of PCM are discussed.

1,488 citations

Journal ArticleDOI
TL;DR: In this article, a review of thermal transport at the nanoscale is presented, emphasizing developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field.
Abstract: A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interface...

1,307 citations

Journal ArticleDOI
TL;DR: A detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted.
Abstract: Semiconductor nanowires (NWs) have been studied extensively for over two decades for their novel electronic, photonic, thermal, electrochemical and mechanical properties. This comprehensive review article summarizes major advances in the synthesis, characterization, and application of these materials in the past decade. Developments in the understanding of the fundamental principles of "bottom-up" growth mechanisms are presented, with an emphasis on rational control of the morphology, stoichiometry, and crystal structure of the materials. This is followed by a discussion of the application of nanowires in i) electronic, ii) sensor, iii) photonic, iv) thermoelectric, v) photovoltaic, vi) photoelectrochemical, vii) battery, viii) mechanical, and ix) biological applications. Throughout the discussion, a detailed explanation of the unique properties associated with the one-dimensional nanowire geometry will be presented, and the benefits of these properties for the various applications will be highlighted. The review concludes with a brief perspective on future research directions, and remaining barriers which must be overcome for the successful commercial application of these technologies.

789 citations

Journal ArticleDOI
TL;DR: Different theoretical approaches developed for phonon transport in graphene are outlined, contributions of the in-plane and cross-plane phonon modes are discussed, and comparison with available experimental thermal conductivity data is provided.
Abstract: Properties of phonons-quanta of the crystal lattice vibrations-in graphene have recently attracted significant attention from the physics and engineering communities. Acoustic phonons are the main heat carriers in graphene near room temperature, while optical phonons are used for counting the number of atomic planes in Raman experiments with few-layer graphene. It was shown both theoretically and experimentally that transport properties of phonons, i.e. energy dispersion and scattering rates, are substantially different in a quasi-two-dimensional system such as graphene compared to the basal planes in graphite or three-dimensional bulk crystals. The unique nature of two-dimensional phonon transport translates into unusual heat conduction in graphene and related materials. In this review, we outline different theoretical approaches developed for phonon transport in graphene, discuss contributions of the in-plane and cross-plane phonon modes, and provide comparison with available experimental thermal conductivity data. Particular attention is given to analysis of recent results for the phonon thermal conductivity of single-layer graphene and few-layer graphene, and the effects of the strain, defects, and isotopes on phonon transport in these systems.

486 citations