scispace - formally typeset
Search or ask a question
Author

Minn-Tsong Lin

Bio: Minn-Tsong Lin is an academic researcher from Academia Sinica. The author has contributed to research in topics: Magnetization & Magnetic anisotropy. The author has an hindex of 25, co-authored 142 publications receiving 1906 citations. Previous affiliations of Minn-Tsong Lin include National Tsing Hua University & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: The results of this study extend the current understanding of metallic 2D-TMDs in the search for exotic low-dimensional quantum phenomena, and stimulate further theoretical and experimental studies on van der Waals monolayer magnets.
Abstract: Monolayer VSe2 , featuring both charge density wave and magnetism phenomena, represents a unique van der Waals magnet in the family of metallic 2D transition-metal dichalcogenides (2D-TMDs). Herein, by means of in situ microscopy and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray absorption, direct spectroscopic signatures are established, that identify the metallic 1T-phase and vanadium 3d1 electronic configuration in monolayer VSe2 grown on graphite by molecular-beam epitaxy. Element-specific X-ray magnetic circular dichroism, complemented with magnetic susceptibility measurements, further reveals monolayer VSe2 as a frustrated magnet, with its spins exhibiting subtle correlations, albeit in the absence of a long-range magnetic order down to 2 K and up to a 7 T magnetic field. This observation is attributed to the relative stability of the ferromagnetic and antiferromagnetic ground states, arising from its atomic-scale structural features, such as rotational disorders and edges. The results of this study extend the current understanding of metallic 2D-TMDs in the search for exotic low-dimensional quantum phenomena, and stimulate further theoretical and experimental studies on van der Waals monolayer magnets.

134 citations

Journal ArticleDOI
31 Jan 2011-ACS Nano
TL;DR: The nanotechnological approach, where the nanogap and the dielectrophoresis technique are used for single nanofiber device fabrication, is applied for determination of mesoscopic charge transport in a polyaniline conducting polymer.
Abstract: A nanotechnological approach is applied to measurements of the electric field dependence of resistance under a high electric field while in low voltage. With this technique, the conduction mechanism on a mesoscopic scale is explored in a single, nonagglomerated nanofiber. Polyaniline nanofibers are prepared by vigorous mixing of aniline and oxidation agent ammonium persulfate in acid solution. They exhibit a uniform nanoscale morphology rather than agglomeration as that produced via conventional chemical oxidation. The as-synthesized polyaniline nanofibers are doped (dedoped) with a HCl acid (NH3 base), and their temperature behaviors of resistances follow an exponential function with an exponent of T−1/2. To measure the conduction mechanism in a single nanofiber, the dielectrophoresis technique is implemented to position nanofibers on top of two electrodes with a nanogap of 100−600 nm, patterned by electron-beam lithography. After the devices are irradiated by electron beam to reduce contact resistances,...

71 citations

Journal ArticleDOI
TL;DR: High quality single crystal ZrSiS as a theoretically predicted Dirac semimetal has been grown successfully using a vapor phase transport method and the transport and thermodynamic properties suggest a Fermi liquid behavior with two Fermani pockets at low temperatures.
Abstract: High quality single crystal ZrSiS as a theoretically predicted Dirac semimetal has been grown successfully using a vapor phase transport method. The single crystals of tetragonal structure are easy to cleave into perfect square-shaped pieces due to the van der Waals bonding between the sulfur atoms of the quintuple layers. Physical property measurement results including resistivity, Hall coefficient (RH), and specific heat are reported. The transport and thermodynamic properties suggest a Fermi liquid behavior with two Fermi pockets at low temperatures. At T = 3 K and magnetic field of Hǁc up to 9 Tesla, large magneto-resistance up to 8500% and 7200% for Iǁ(100) and Iǁ(110) were found. Shubnikov de Haas (SdH) oscillations were identified from the resistivity data, revealing the existence of two Fermi pockets at the Fermi level via the fast Fourier transform (FFT) analysis. The Hall coefficient (RH) showed hole-dominated carriers with a high mobility of 3.05 × 104 cm2 V-1 s-1 at 3 K. ZrSiS has been confirmed to be a Dirac semimetal by the Dirac cone mapping near the X-point via angle resolved photoemission spectroscopy (ARPES) with a Dirac nodal line near the Fermi level identified using scanning tunneling spectroscopy (STS).

70 citations

Journal ArticleDOI
TL;DR: Titanium nitride (TiN) is an interesting refractory metallic compound which could replace gold as an alternative plasmonic material, especially for high temperature and semiconductor compatible application.
Abstract: Titanium nitride (TiN) is an interesting refractory metallic compound which could replace gold as an alternative plasmonic material, especially for high temperature and semiconductor compatible app...

69 citations

Journal ArticleDOI
TL;DR: An oxotungsten-silica mesoporous structure (WSBA-15) has a hierarchical crystalline architecture in which the W dopants possess tetrahedral coordination geometries for the mixed-valence states W6+, W5+, and W4+.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Abstract: Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

3,407 citations

01 Jan 2016
TL;DR: The electronic transport in mesoscopic systems is universally compatible with any devices to read, and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading electronic transport in mesoscopic systems. Maybe you have knowledge that, people have look numerous times for their favorite readings like this electronic transport in mesoscopic systems, but end up in harmful downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their computer. electronic transport in mesoscopic systems is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the electronic transport in mesoscopic systems is universally compatible with any devices to read.

1,220 citations

Journal ArticleDOI
TL;DR: A review of the state of the art and level of understanding of direct ion and electron beam fabrication and point out some of the unsolved problems can be found in this article, where the authors also discuss structures that are made for research purposes or for demonstration of the processing capabilities.
Abstract: Beams of electrons and ions are now fairly routinely focused to dimensions in the nanometer range. Since the beams can be used to locally alter material at the point where they are incident on a surface, they represent direct nanofabrication tools. The authors will focus here on direct fabrication rather than lithography, which is indirect in that it uses the intermediary of resist. In the case of both ions and electrons, material addition or removal can be achieved using precursor gases. In addition ions can also alter material by sputtering (milling), by damage, or by implantation. Many material removal and deposition processes employing precursor gases have been developed for numerous practical applications, such as mask repair, circuit restructuring and repair, and sample sectioning. The authors will also discuss structures that are made for research purposes or for demonstration of the processing capabilities. In many cases the minimum dimensions at which these processes can be realized are considerably larger than the beam diameters. The atomic level mechanisms responsible for the precursor gas activation have not been studied in detail in many cases. The authors will review the state of the art and level of understanding of direct ion and electron beam fabrication and point out some of the unsolved problems.

941 citations

Journal ArticleDOI
TL;DR: This review of the challenges in the CVD growth of 2D materials highlights recent advances in the controlled growth of single crystal 2Dmaterials, with an emphasis on semiconducting transition metal dichalcogenides.
Abstract: Two-dimensional (2D) materials have attracted increasing research interest because of the abundant choice of materials with diverse and tunable electronic, optical, and chemical properties. Moreover, 2D material based heterostructures combining several individual 2D materials provide unique platforms to create an almost infinite number of materials and show exotic physical phenomena as well as new properties and applications. To achieve these high expectations, methods for the scalable preparation of 2D materials and 2D heterostructures of high quality and low cost must be developed. Chemical vapor deposition (CVD) is a powerful method which may meet the above requirements, and has been extensively used to grow 2D materials and their heterostructures in recent years, despite several challenges remaining. In this review of the challenges in the CVD growth of 2D materials, we highlight recent advances in the controlled growth of single crystal 2D materials, with an emphasis on semiconducting transition meta...

893 citations

Journal ArticleDOI
TL;DR: The fabrication methods and physical properties of ordered magnetic nanostructures with dimensions on the submicron to nanometer scale are reviewed in this article, where various types of nanofabrication techniques are described, and their capabilities and limitations in achieving magnetic nano-structures are discussed.

842 citations