scispace - formally typeset
Search or ask a question
Author

Minoru Oikawa

Other affiliations: Keio University, Chiba University
Bio: Minoru Oikawa is an academic researcher from Kōchi University. The author has contributed to research in topics: Holography & Fresnel diffraction. The author has an hindex of 19, co-authored 39 publications receiving 1224 citations. Previous affiliations of Minoru Oikawa include Keio University & Chiba University.

Papers
More filters
Journal ArticleDOI
20 Sep 2018-Cell
TL;DR: This work presents a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate and is expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.

366 citations

Journal ArticleDOI
TL;DR: Raman image-activated cell sorting is demonstrated by directly probing chemically specific intracellular molecular vibrations via ultrafast multicolor stimulated Raman scattering (SRS) microscopy for cellular phenotyping and holds promise for numerous applications that were previously difficult or undesirable with fluorescence-based technologies.
Abstract: The advent of image-activated cell sorting and imaging-based cell picking has advanced our knowledge and exploitation of biological systems in the last decade. Unfortunately, they generally rely on fluorescent labeling for cellular phenotyping, an indirect measure of the molecular landscape in the cell, which has critical limitations. Here we demonstrate Raman image-activated cell sorting by directly probing chemically specific intracellular molecular vibrations via ultrafast multicolor stimulated Raman scattering (SRS) microscopy for cellular phenotyping. Specifically, the technology enables real-time SRS-image-based sorting of single live cells with a throughput of up to ~100 events per second without the need for fluorescent labeling. To show the broad utility of the technology, we show its applicability to diverse cell types and sizes. The technology is highly versatile and holds promise for numerous applications that are previously difficult or undesirable with fluorescence-based technologies. Most current cell sorting methods are based on fluorescence detection with no imaging capability. Here the authors generate and use Raman image-activated cell sorting with a throughput of around 100 events per second, providing molecular images with no need for labeling.

107 citations

Journal ArticleDOI
TL;DR: The WRP method using Shifted-Fresnel diffraction to solve the former problem, and all the steps could be implemented on a GPU, and a large CGH was obtained from the object points at the video rate.
Abstract: We report the generation of a real-time large computer generated hologram (CGH) using the wavefront recording plane (WRP) method with the aid of a graphics processing unit (GPU). The WRP method consists of two steps: the first step calculates a complex amplitude on a WRP that is placed between a 3D object and a CGH, from a three-dimensional (3D) object. The second step obtains a CGH by calculating diffraction from the WRP to the CGH. The disadvantages of the previous WRP method include the inability to record a large three-dimensional object that exceeds the size of the CGH, and the difficulty in implementing to all the steps on a GPU. We improved the WRP method using Shifted-Fresnel diffraction to solve the former problem, and all the steps could be implemented on a GPU. We show optical reconstructions from a 1,980 × 1,080 phase only CGH generated by about 3 × 10(4) object points over 90 frames per second. In other words, the improved method obtained a large CGH with about 6 mega pixels (1,980 × 1,080 × 3) from the object points at the video rate.

99 citations

Journal ArticleDOI
TL;DR: This paper demonstrates a lensless zoomable holographic projection that realizes the zoom function using a numerical method, called scaled Fresnel diffraction which can calculate diffraction at different sampling rates on a projected image and hologram.
Abstract: Projectors require a zoom function. This function is generally realized using a zoom lens module composed of many lenses and mechanical parts; however, using a zoom lens module increases the system size and cost, and requires manual operation of the module. Holographic projection is an attractive technique because it inherently requires no lenses, reconstructs images with high contrast and reconstructs color images with one spatial light modulator. In this paper, we demonstrate a lensless zoomable holographic projection. Without using a zoom lens module, this holographic projection realizes the zoom function using a numerical method, called scaled Fresnel diffraction which can calculate diffraction at different sampling rates on a projected image and hologram.

98 citations

Journal ArticleDOI
TL;DR: Equipped with the improved capabilities, this new generation of the iIACS technology holds promise for diverse applications in immunology, microbiology, stem cell biology, cancer biology, pathology, and synthetic biology.
Abstract: The advent of intelligent image-activated cell sorting (iIACS) has enabled high-throughput intelligent image-based sorting of single live cells from heterogeneous populations. iIACS is an on-chip microfluidic technology that builds on a seamless integration of a high-throughput fluorescence microscope, cell focuser, cell sorter, and deep neural network on a hybrid software-hardware data management architecture, thereby providing the combined merits of optical microscopy, fluorescence-activated cell sorting (FACS), and deep learning. Here we report an iIACS machine that far surpasses the state-of-the-art iIACS machine in system performance in order to expand the range of applications and discoveries enabled by the technology. Specifically, it provides a high throughput of ∼2000 events per second and a high sensitivity of ∼50 molecules of equivalent soluble fluorophores (MESFs), both of which are 20 times superior to those achieved in previous reports. This is made possible by employing (i) an image-sensor-based optomechanical flow imaging method known as virtual-freezing fluorescence imaging and (ii) a real-time intelligent image processor on an 8-PC server equipped with 8 multi-core CPUs and GPUs for intelligent decision-making, in order to significantly boost the imaging performance and computational power of the iIACS machine. We characterize the iIACS machine with fluorescent particles and various cell types and show that the performance of the iIACS machine is close to its achievable design specification. Equipped with the improved capabilities, this new generation of the iIACS technology holds promise for diverse applications in immunology, microbiology, stem cell biology, cancer biology, pathology, and synthetic biology.

82 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
Eric J. Topol1
TL;DR: Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient–doctor relationship or facilitate its erosion remains to be seen.
Abstract: The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely be actualized, but whether that will be used to improve the patient-doctor relationship or facilitate its erosion remains to be seen.

2,574 citations

Journal ArticleDOI
TL;DR: The intersection between deep learning and cellular image analysis is reviewed and an overview of both the mathematical mechanics and the programming frameworks of deep learning that are pertinent to life scientists are provided.
Abstract: Recent advances in computer vision and machine learning underpin a collection of algorithms with an impressive ability to decipher the content of images. These deep learning algorithms are being applied to biological images and are transforming the analysis and interpretation of imaging data. These advances are positioned to render difficult analyses routine and to enable researchers to carry out new, previously impossible experiments. Here we review the intersection between deep learning and cellular image analysis and provide an overview of both the mathematical mechanics and the programming frameworks of deep learning that are pertinent to life scientists. We survey the field's progress in four key applications: image classification, image segmentation, object tracking, and augmented microscopy. Last, we relay our labs' experience with three key aspects of implementing deep learning in the laboratory: annotating training data, selecting and training a range of neural network architectures, and deploying solutions. We also highlight existing datasets and implementations for each surveyed application.

714 citations

Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations

Journal ArticleDOI
TL;DR: How circulate tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from liquid biopsies is discussed.
Abstract: Single-cell technologies have contributed to unravelling tumour heterogeneity, now considered a hallmark of cancer and one of the main causes of tumour resistance to cancer therapies. Liquid biopsy (LB), defined as the detection and analysis of cells or cell products released by tumours into the blood, offers an appealing minimally invasive approach that allows the characterization and monitoring of tumour heterogeneity in individual patients. Here, we will review and discuss how circulating tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from LBs. The molecular analysis of CTCs provides complementary information to that of genomic aberrations determined using ctDNA to fully describe many different cellular components (for example, DNA, RNA, proteins and metabolites) that can influence tumour heterogeneity.

339 citations