scispace - formally typeset
Search or ask a question
Author

Minren Lin

Bio: Minren Lin is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Dielectric & Dielectric loss. The author has an hindex of 30, co-authored 64 publications receiving 4032 citations. Previous affiliations of Minren Lin include Foundation University, Islamabad.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
21 Jul 2006-Science
TL;DR: It is demonstrated that a very high energy density with fast discharge speed and low loss can be obtained in defect-modified poly(vinylidene fluoride) polymers by combining nonpolar and polar molecular structural changes of the polymer with the proper dielectric constants.
Abstract: Dielectric polymers with high dipole density have the potential to achieve very high energy density, which is required in many modern electronics and electric systems. We demonstrate that a very high energy density with fast discharge speed and low loss can be obtained in defect-modified poly(vinylidene fluoride) polymers. This is achieved by combining nonpolar and polar molecular structural changes of the polymer with the proper dielectric constants, to avoid the electric displacement saturation at electric fields well below the breakdown field. The results indicate that a very high dielectric constant may not be desirable to reach a very high energy density.

2,008 citations

Journal ArticleDOI
TL;DR: In this article, the electrocaloric effect (ECE) in inorganic thin film and organic relaxor ferroelectrics is investigated by directly measuring the ECE around room temperature, and the results reveal that giant ECEs can be obtained in the high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) relaxor copolymer and in the La-doped Pb(ZrTi)O3 relaxor ceramic thin films, which are much larger than that from the normal ferroelectric counterparts.
Abstract: The electrocaloric effect (ECE) in inorganic thin film and organic relaxor ferroelectrics is investigated by directly measuring the ECE around room temperature. The results reveal that giant ECEs can be obtained in the high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) relaxor copolymer and in the La-doped Pb(ZrTi)O3 relaxor ceramic thin films, which are much larger than that from the normal ferroelectric counterparts. The large ECE observed, compared with normal ferroelectrics, is likely caused by the large number of disordered fluctuating polarization entities in relaxor ferroelectrics which can lead to extra entropy contributions and larger ECE.

307 citations

Journal ArticleDOI
TL;DR: The promise of aromatic, amorphous, polar polymers containing high dipolar moments with very low defect levels is demonstrated for future dielectric materials with ultrahigh electric-energy density, low loss at high applied fields, and ultrahigh breakdown strengths.
Abstract: The promise of aromatic, amorphous, polar polymers containing high dipolar moments with very low defect levels is demonstrated for future dielectric materials with ultrahigh electric-energy density, low loss at high applied fields, and ultrahigh breakdown strengths Specifically, aromatic polythiourea films exhibit an ultrahigh breakdown field (>1 GV m(-1)), which results in an energy density of ≈22 J cm(-3), as well as a low loss

267 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the directly measured electrocaloric effect (ECE) (the adiabatic temperature change ΔT) of relaxor ferroelectric poly(vinylidene fluoride-trifluorethylene-chlorofluoroethylene).
Abstract: We report the directly measured electrocaloric effect (ECE) (the adiabatic temperature change ΔT) of relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer and its blend with poly(vinylidene fluoride-chlorotrifluoroethylene). The results show that the directly measured ΔT in the relaxor terpolymer is much larger than that deduced from Maxwell relation and that the relaxor terpolymer possesses a giant ECE at room temperature. The large difference between the directly measured ΔT and that deduced indicates that the Maxwell relation, which is derived for ergodic systems, is not suitable for deducing ECE in the relaxor ferroelectric polymers, which are nonergodic (polar-glass) material systems.

209 citations

Journal ArticleDOI
Xin Zhou1, Baojin Chu1, Bret Neese1, Minren Lin1, Qiming Zhang1 
TL;DR: In this paper, the authors investigated the dielectric and discharge behavior of polyvinylidene fluoride-based copolymer film capacitors and found that the discharge energy density decreases with frequency and the discharged energy density is also reduced at shorted discharge time.
Abstract: The high electric displacement (D>0.1 C/m2) and breakdown field (600 MV/m) in polyvinylidene fluoride based polymers suggest high electrical energy density in this class of polymers. By defect modifications which reduce or eliminate the remnant polarization in the polymer, a high electrical energy density can indeed be obtained. This paper shows that in properly prepared P(VDF-CTFE) copolymer film capacitors, an electrical energy density ~25 J/cm3 can be obtained with a breakdown field higher than 600 MV/m. The dielectric and discharge behavior of the polymer films were investigated. The results reveal that there are strong frequency dispersions in both the dielectric and discharge behavior. The dielectric constant decreases with frequency and the discharged energy density is also reduced at shorted discharge time (~1 mus) due to increased ESR for fast discharge. The results indicate the potential of this class of polymers for high energy density capacitors and suggest the need for further tuning of the polymer compositions to reduce the frequency dispersion.

199 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
04 Dec 2014-Nature
TL;DR: This capacitance report reports a method of producing two-dimensional titanium carbide ‘clay’ using a solution of lithium fluoride and hydrochloric acid that offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
Abstract: Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.

3,783 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

01 Nov 2000
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.

2,437 citations