scispace - formally typeset
Search or ask a question
Author

Minsu Cho

Bio: Minsu Cho is an academic researcher from Pohang University of Science and Technology. The author has contributed to research in topics: Object detection & Object (computer science). The author has an hindex of 37, co-authored 115 publications receiving 4642 citations. Previous affiliations of Minsu Cho include Iowa State University & Valeo.


Papers
More filters
Proceedings ArticleDOI
10 Apr 2019
TL;DR: In this article, a relational knowledge distillation (RKD) method is proposed to transfer mutual relations of data examples instead of training the student to mimic output activations of individual data examples represented by the teacher.
Abstract: Knowledge distillation aims at transferring knowledge acquired in one model (a teacher) to another model (a student) that is typically smaller. Previous approaches can be expressed as a form of training the student to mimic output activations of individual data examples represented by the teacher. We introduce a novel approach, dubbed relational knowledge distillation (RKD), that transfers mutual relations of data examples instead. For concrete realizations of RKD, we propose distance-wise and angle-wise distillation losses that penalize structural differences in relations. Experiments conducted on different tasks show that the proposed method improves educated student models with a significant margin. In particular for metric learning, it allows students to outperform their teachers' performance, achieving the state of the arts on standard benchmark datasets.

860 citations

Book ChapterDOI
05 Sep 2010
TL;DR: This work proposes a robust graph matching algorithm against outliers and deformation by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph and achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences.
Abstract: Graph matching is an essential problem in computer vision and machine learning. In this paper, we introduce a random walk view on the problem and propose a robust graph matching algorithm against outliers and deformation. Matching between two graphs is formulated as node selection on an association graph whose nodes represent candidate correspondences between the two graphs. The solution is obtained by simulating random walks with reweighting jumps enforcing the matching constraints on the association graph. Our algorithm achieves noise-robust graph matching by iteratively updating and exploiting the confidences of candidate correspondences. In a practical sense, our work is of particular importance since the real-world matching problem is made difficult by the presence of noise and outliers. Extensive and comparative experiments demonstrate that it outperforms the state-of-the-art graph matching algorithms especially in the presence of outliers and deformation.

498 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: In this article, a part-based region matching approach was proposed to solve the unsupervised discovery and localization of dominant objects from a noisy image collection with multiple object classes, which is far more general than typical colocalization, cosegmentation or weakly-supervised localization tasks.
Abstract: This paper addresses unsupervised discovery and localization of dominant objects from a noisy image collection with multiple object classes. The setting of this problem is fully unsupervised, without even image-level annotations or any assumption of a single dominant class. This is far more general than typical colocalization, cosegmentation, or weakly-supervised localization tasks. We tackle the discovery and localization problem using a part-based region matching approach: We use off-the-shelf region proposals to form a set of candidate bounding boxes for objects and object parts. These regions are efficiently matched across images using a probabilistic Hough transform that evaluates the confidence for each candidate correspondence considering both appearance and spatial consistency. Dominant objects are discovered and localized by comparing the scores of candidate regions and selecting those that stand out over other regions containing them. Extensive experimental evaluations on standard benchmarks demonstrate that the proposed approach significantly outperforms the current state of the art in colocalization, and achieves robust object discovery in challenging mixed-class datasets.

282 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: This work proposes Quadruplet Convolutional Neural Networks (Quad-CNN) for multi-object tracking, which learn to associate object detections across frames using quadruplet losses and employs a multi-task loss to jointly learn object association and bounding box regression for better localization.
Abstract: We propose Quadruplet Convolutional Neural Networks (Quad-CNN) for multi-object tracking, which learn to associate object detections across frames using quadruplet losses. The proposed networks consider target appearances together with their temporal adjacencies for data association. Unlike conventional ranking losses, the quadruplet loss enforces an additional constraint that makes temporally adjacent detections more closely located than the ones with large temporal gaps. We also employ a multi-task loss to jointly learn object association and bounding box regression for better localization. The whole network is trained end-to-end. For tracking, the target association is performed by minimax label propagation using the metric learned from the proposed network. We evaluate performance of our multi-object tracking algorithm on public MOT Challenge datasets, and achieve outstanding results.

265 citations

Posted Content
TL;DR: This work introduces two types of context-aware guidance models, additive and contrastive models, that leverage their surrounding context regions to improve localization in objects in images using image-level supervision only.
Abstract: We aim to localize objects in images using image-level supervision only. Previous approaches to this problem mainly focus on discriminative object regions and often fail to locate precise object boundaries. We address this problem by introducing two types of context-aware guidance models, additive and contrastive models, that leverage their surrounding context regions to improve localization. The additive model encourages the predicted object region to be supported by its surrounding context region. The contrastive model encourages the predicted object region to be outstanding from its surrounding context region. Our approach benefits from the recent success of convolutional neural networks for object recognition and extends Fast R-CNN to weakly supervised object localization. Extensive experimental evaluation on the PASCAL VOC 2007 and 2012 benchmarks shows hat our context-aware approach significantly improves weakly supervised localization and detection.

233 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

01 Jan 2006

3,012 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: An appearance-based method for person re-identification that consists in the extraction of features that model three complementary aspects of the human appearance: the overall chromatic content, the spatial arrangement of colors into stable regions, and the presence of recurrent local motifs with high entropy.
Abstract: In this paper, we present an appearance-based method for person re-identification. It consists in the extraction of features that model three complementary aspects of the human appearance: the overall chromatic content, the spatial arrangement of colors into stable regions, and the presence of recurrent local motifs with high entropy. All this information is derived from different body parts, and weighted opportunely by exploiting symmetry and asymmetry perceptual principles. In this way, robustness against very low resolution, occlusions and pose, viewpoint and illumination changes is achieved. The approach applies to situations where the number of candidates varies continuously, considering single images or bunch of frames for each individual. It has been tested on several public benchmark datasets (ViPER, iLIDS, ETHZ), gaining new state-of-the-art performances.

1,674 citations