scispace - formally typeset
Search or ask a question
Author

Minwan Jung

Bio: Minwan Jung is an academic researcher from Seoul National University. The author has contributed to research in topics: Fiber laser & Saturable absorption. The author has an hindex of 8, co-authored 19 publications receiving 634 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that stable, ultrafast pulses with a temporal width of ~795 fs could readily be generated at a wavelength of 1935 nm from a thulium/holmium co-doped fiber ring cavity.
Abstract: We experimentally demonstrate a femtosecond mode-locked, all-fiberized laser that operates in the 2 μm region and that incorporates a saturable absorber based on a bulk-structured bismuth telluride (Bi(2)Te(3)) topological insulator (TI). Our fiberized saturable absorber was prepared by depositing a mechanically exfoliated, ~30 μm-thick Bi(2)Te(3) TI layer on a side-polished optical fiber platform. The bulk crystalline structure of the prepared Bi(2)Te(3) layer was confirmed by Raman and X-ray photoelectron spectroscopy measurements. The modulation depth of the prepared saturable absorber was measured to be ~20.6%. Using the saturable absorber, it is shown that stable, ultrafast pulses with a temporal width of ~795 fs could readily be generated at a wavelength of 1935 nm from a thulium/holmium co-doped fiber ring cavity. This experimental demonstration confirms that bulk structured, TI-based saturable absorbers can readily be used as an ultra-fast mode-locker for 2 μm lasers.

247 citations

Journal ArticleDOI
TL;DR: The results of this experiment confirm that WS2 can be used as an effective broadband saturable absorption material that is suitable to passively generate pulses at 2 μm wavelengths.
Abstract: We demonstrate the use of an all-fiberized, mode-locked 1.94 μm laser with a saturable absorption device based on a tungsten disulfide (WS2)-deposited side-polished fiber. The WS2 particles were prepared via liquid phase exfoliation (LPE) without centrifugation. A series of measurements including Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the prepared particles had thick nanostructures of more than 5 layers. The prepared saturable absorption device used the evanescent field interaction mechanism between the oscillating beam and WS2 particles and its modulation depth was measured to be ~10.9% at a wavelength of 1925 nm. Incorporating the WS2-based saturable absorption device into a thulium-holmium co-doped fiber ring cavity, stable mode-locked pulses with a temporal width of ~1.3 ps at a repetition rate of 34.8 MHz were readily obtained at a wavelength of 1941 nm. The results of this experiment confirm that WS2 can be used as an effective broadband saturable absorption material that is suitable to passively generate pulses at 2 μm wavelengths.

162 citations

Journal ArticleDOI
TL;DR: It was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce stable femtosecond pulses by incorporating a graphene oxide-deposited side-polished fiber.
Abstract: An in-depth experimental investigation was conducted into the use of a graphene oxide-based saturable absorber implemented on a side-polished fiber platform for femtosecond pulse generation in the 2 μm region. First, it was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce stable femtosecond pulses by incorporating a graphene oxide-deposited side-polished fiber. Second, the measurement accuracy issue in obtaining a precise pulse-width value by use of an autocorrelator together with a silica fiber-based 2 μm-band amplifier was investigated. It showed that the higher-order soliton compression effect caused by the combination of anomalous dispersion and Kerr nonlinearity can provide incorrect pulse-width information. Third, an experimental investigation into the precise role of the graphene oxide-deposited side-polished fiber was carried out to determine whether its polarization-dependent loss (PDL) can be a substantial contributor to mode-locking through nonlinear polarization rotation. By comparing its performance with that of a gold-deposited side-polished fiber, the PDL contribution to mode-locking was found to be insignificant, and the dominant mode-locking mechanism was shown to be saturable absorption due to mutual interaction between the evanescent field of the oscillated beam and the deposited graphene oxide particles.

99 citations

Journal ArticleDOI
TL;DR: In this paper, the use of a graphene oxide (GO)-deposited D-shaped fiber as a saturable absorber for mode locking of a thulium-doped fiber laser is experimentally demonstrated.
Abstract: The use of a graphene oxide (GO)-deposited D-shaped fiber as a saturable absorber for mode locking of a thulium-doped fiber laser is experimentally demonstrated. By using the evanescent field interaction of an oscillating beam with GO, a passive mode locking operation at a wavelength of ~1.91 µm is shown to be achievable from a ring cavity. Stable picosecond pulses are readily obtained at a repetition rate of 15.9 MHz. This demonstration confirms that GO is a cost-effective saturable absorber applicable for ~2 µm ultrafast pulse generation.

70 citations

Journal ArticleDOI
Junsu Lee1, Minwan Jung1, Joonhoi Koo1, Cheolhwan Chi1, Ju Han Lee1 
TL;DR: In this paper, a bulk-structured topological insulator (TI) film was used as an effective Q-switch for a 1.89-μm laser with a minimum temporal width of 1.71 μs.
Abstract: We experimentally demonstrate that a bulk-structured Bi 2 Te 3 topological insulator (TI) film deposited on a side-polished fiber can act as an effective Q-switch for a 1.89-μm laser. Our bulk-structured Bi 2 Te 3 TI film with a thickness of ~31 μm, was prepared using a mechanical exfoliation method, and the fabricated film was transferred onto a side-polished SM2000 fiber to form a fiberized saturable absorber based on evanescent field interaction. By incorporating the saturable absorber into a thulium (Tm)-holmium (Ho) co-doped fiber-based ring cavity, it is shown that Q-switched pulses with a minimum temporal width of ~1.71 μs can readily be produced at a wavelength of 1.89 μm. The output pulse repetition rate was tunable from ~35 to ~60 kHz depending on the pump power. The maximum output pulse energy was ~11.54 nJ at a pump power of 250 mW. The output performance of our laser is compared to that of the 1.98-μm Q-switched fiber laser based on a nanosheet-based Bi 2 Se 3 TI demonstrated previously by Luo et al.

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: The saturable absorption property of the fabricated BP-SAs at the telecommunication band is characterized and shows that BP could also be developed as an effective SA for pulsed fiber or solid-state lasers.
Abstract: Black phosphorus (BP), an emerging narrow direct band-gap two-dimensional (2D) layered material that can fill the gap between the semi-metallic graphene and the wide-bandgap transition metal dichalcogenides (TMDs), had been experimentally found to exhibit the saturation of optical absorption if under strong light illumination. By taking advantage of this saturable absorption property, we could fabricate a new type of optical saturable absorber (SA) based on mechanically exfoliated BPs, and further demonstrate the applications for ultra-fast laser photonics. Based on the balanced synchronous twin-detector measurement method, we have characterized the saturable absorption property of the fabricated BP-SAs at the telecommunication band. By incorporating the BP-based SAs device into the all-fiber Erbium-doped fiber laser cavities, we are able to obtain either the passive Q-switching (with maximum pulse energy of 94.3 nJ) or the passive mode-locking operation (with pulse duration down to 946 fs). Our results show that BP could also be developed as an effective SA for pulsed fiber or solid-state lasers.

837 citations

Journal ArticleDOI
TL;DR: This work may constitute the first example of MoS2-enabled wave-guiding photonic device, and potentially give some new insights into two-dimensional layered materials related photonics.
Abstract: By coupling few-layer Molybdenum Disulfide (MoS2) with fiber-taper evanescent light field, a new type of MoS2 based nonlinear optical modulating element had been successfully fabricated as a two-dimensional layered saturable absorber with strong light-matter interaction. This MoS2-taper-fiber device is not only capable of passively mode-locking an all-normal-dispersion ytterbium-doped fiber laser and enduring high power laser excitation (up to 1 W), but also functions as a polarization sensitive optical modulating component (that is, different polarized light can induce different nonlinear optical response). Thanks to the combined advantages from the strong nonlinear optical response in MoS2 together with the sufficiently-long-range interaction between light and MoS2, this device allows for the generation of high power stable dissipative solitons at 1042.6 nm with pulse duration of 656 ps and a repetition rate of 6.74 MHz at a pump power of 210 mW. Our work may also constitute the first example of MoS2-enabled wave-guiding photonic device, and potential y give some new insights into two-dimensional layered materials related photonics.

428 citations

Journal ArticleDOI
TL;DR: It is found that MoSe(2) exhibits highest modulation depth with similar preparation process among four saturable absorbers, which demonstrates the feasibility of TMDs to Q-switch fiber laser effectively.
Abstract: In this paper, we report 4 different saturable absorbers based on 4 transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2) and utilize them to Q-switch a ring-cavity fiber laser with identical cavity configuration. It is found that MoSe2 exhibits highest modulation depth with similar preparation process among four saturable absorbers. Q-switching operation performance is compared from the aspects of RF spectrum, optical spectrum, repetition rate and pulse duration. WS2 Q-switched fiber laser generates the most stable pulse trains compared to other 3 fiber lasers. These results demonstrate the feasibility of TMDs to Q-switch fiber laser effectively and provide a meaningful reference for further research in nonlinear fiber optics with these TMDs materials.

414 citations

Journal ArticleDOI
TL;DR: Up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations and the outlook for future opportunities of these 2D materials for optical modulation is given.
Abstract: Owing to their atomic layer thickness, strong light–material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

361 citations