scispace - formally typeset
Search or ask a question
Author

Mirko Prezioso

Other affiliations: University of California
Bio: Mirko Prezioso is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Memristor & Neuromorphic engineering. The author has an hindex of 25, co-authored 66 publications receiving 3729 citations. Previous affiliations of Mirko Prezioso include University of California.


Papers
More filters
Journal ArticleDOI
07 May 2015-Nature
TL;DR: The experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification).
Abstract: Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex, with its approximately 10(14) synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks based on circuits combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one or several crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits, including first demonstrations of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks. Very recently, such experiments have been extended to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors, whose nonlinear current-voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.

2,222 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a neural network using a transistor-free passive memristor crossbar array, offering potential circuit miniaturisation and energy savings, and demonstrate operation of one-hidden layer perceptron classifier entirely in the mixed-signal integrated hardware, comprised of two passive 20 × 20 metal-oxide memristive crossbar arrays, board-integrated with discrete conventional components.
Abstract: The progress in the field of neural computation hinges on the use of hardware more efficient than the conventional microprocessors. Recent works have shown that mixed-signal integrated memristive circuits, especially their passive (0T1R) variety, may increase the neuromorphic network performance dramatically, leaving far behind their digital counterparts. The major obstacle, however, is immature memristor technology so that only limited functionality has been reported. Here we demonstrate operation of one-hidden layer perceptron classifier entirely in the mixed-signal integrated hardware, comprised of two passive 20 × 20 metal-oxide memristive crossbar arrays, board-integrated with discrete conventional components. The demonstrated network, whose hardware complexity is almost 10× higher as compared to previously reported functional classifier circuits based on passive memristive crossbars, achieves classification fidelity within 3% of that obtained in simulations, when using ex-situ training. The successful demonstration was facilitated by improvements in fabrication technology of memristors, specifically by lowering variations in their I–V characteristics. Memristive devices used in neuromorphic computing typically need to be accessed using transistors, adding circuit complexity and size. In this work, the authors demonstrate a neural network using a transistor-free passive memristor crossbar array, offering potential circuit miniaturisation and energy savings.

258 citations

Posted Content
TL;DR: A neural network is demonstrated using a transistor-free passive memristor crossbar array, offering potential circuit miniaturisation and energy savings, and achieves classification fidelity within 3% of that obtained in simulations, when using ex-situ training.
Abstract: The progress in the field of neural computation hinges on the use of hardware more efficient than the conventional microprocessors. Recent works have shown that mixed-signal integrated memristive circuits, especially their passive ('0T1R') variety, may increase the neuromorphic network performance dramatically, leaving far behind their digital counterparts. The major obstacle, however, is relatively immature memristor technology so that only limited functionality has been demonstrated to date. Here we experimentally demonstrate operation of one-hidden layer perceptron classifier entirely in the mixed-signal integrated hardware, comprised of two passive 20x20 metal-oxide memristive crossbar arrays, board-integrated with discrete CMOS components. The demonstrated multilayer perceptron network, whose complexity is almost 10x higher as compared to previously reported functional neuromorphic classifiers based on passive memristive circuits, achieves classification fidelity within 3 percent of that obtained in simulations, when using ex-situ training approach. The successful demonstration was facilitated by improvements in fabrication technology of memristors, specifically by lowering variations in their I-V characteristics.

170 citations

Journal ArticleDOI
TL;DR: The integrated crosspoint memristors are optimized for analog computing applications allowing successful forming and switching of all 200 devices in the demonstrated crossbar circuit, and, most importantly, precise tuning of the devices' conductance values within the dynamic range of operation.
Abstract: We report a monolithically integrated 3-D metal-oxide memristor crossbar circuit suitable for analog, and in particular, neuromorphic computing applications. The demonstrated crossbar is based on Pt/Al2O3/TiO2– x /TiN/Pt memristors and consists of a stack of two passive $10\times10$ crossbars with shared middle electrodes. The fabrication process has a low, less than 175 °C, temperature budget and includes a planarization step performed before the deposition of the second crossbar layer. These features greatly improve yield and uniformity of the crosspoint devices and allows for utilizing such a fabrication process for integration with CMOS circuits as well as for stacking of multiple crossbar layers. Furthermore, the integrated crosspoint memristors are optimized for analog computing applications allowing successful forming and switching of all 200 devices in the demonstrated crossbar circuit, and, most importantly, precise tuning of the devices’ conductance values within the dynamic range of operation. We believe that the demonstrated work is an important milestone toward the implementation of analog artificial neural networks, specifically, those based on 3-D CMOL circuits.

168 citations

Journal ArticleDOI
TL;DR: This study experimentally demonstrates coincidence detection using a spiking neural network implemented with passively integrated metal-oxide memristive synapses connected to an analogue leaky-integrate-and-fire silicon neuron, and indicates that device-to-device variation is the main challenge towards realization of more complex spiking networks.
Abstract: Spiking neural networks, the most realistic artificial representation of biological nervous systems, are promising due to their inherent local training rules that enable low-overhead online learning, and energy-efficient information encoding. Their downside is more demanding functionality of the artificial synapses, notably including spike-timing-dependent plasticity, which makes their compact efficient hardware implementation challenging with conventional device technologies. Recent work showed that memristors are excellent candidates for artificial synapses, although reports of even simple neuromorphic systems are still very rare. In this study, we experimentally demonstrate coincidence detection using a spiking neural network, implemented with passively integrated metal-oxide memristive synapses connected to an analogue leaky-integrate-and-fire silicon neuron. By employing spike-timing-dependent plasticity learning, the network is able to robustly detect the coincidence by selectively increasing the synaptic efficacies corresponding to the synchronized inputs. Not surprisingly, our results indicate that device-to-device variation is the main challenge towards realization of more complex spiking networks.

147 citations


Cited by
More filters
Journal ArticleDOI
20 Nov 2017
TL;DR: In this paper, the authors provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs, and discuss various hardware platforms and architectures that support DNN, and highlight key trends in reducing the computation cost of deep neural networks either solely via hardware design changes or via joint hardware and DNN algorithm changes.
Abstract: Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems. This article aims to provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic codesigns, being proposed in academia and industry. The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the tradeoffs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.

2,391 citations

Journal ArticleDOI
TL;DR: The diffusive Ag-in-oxide memristor and its dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses, representing an advance in hardware implementation of neuromorphic functionalities.
Abstract: The accumulation and extrusion of Ca2+ in the pre- and postsynaptic compartments play a critical role in initiating plastic changes in biological synapses. To emulate this fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors with a temporal response during and after stimulation similar to that of the synaptic Ca2+ dynamics. In situ high-resolution transmission electron microscopy and nanoparticle dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and regroup spontaneously under zero bias because of interfacial energy minimization, closely resembling synaptic influx and extrusion of Ca2+, respectively. The diffusive memristor and its dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses, representing an advance in hardware implementation of neuromorphic functionalities.

1,569 citations

Journal ArticleDOI
18 Jun 2016
TL;DR: This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner.
Abstract: A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where a specialized neural functional unit performs all the digital arithmetic operations and receives input weights from adjacent eDRAM banks.This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner. While the use of crossbar memory as an analog dot-product engine is well known, no prior work has designed or characterized a full-fledged accelerator based on crossbars. In particular, our work makes the following contributions: (i) We design a pipelined architecture, with some crossbars dedicated for each neural network layer, and eDRAM buffers that aggregate data between pipeline stages. (ii) We define new data encoding techniques that are amenable to analog computations and that can reduce the high overheads of analog-to-digital conversion (ADC). (iii) We define the many supporting digital components required in an analog CNN accelerator and carry out a design space exploration to identify the best balance of memristor storage/compute, ADCs, and eDRAM storage on a chip. On a suite of CNN and DNN workloads, the proposed ISAAC architecture yields improvements of 14.8×, 5.5×, and 7.5× in throughput, energy, and computational density (respectively), relative to the state-of-the-art DaDianNao architecture.

1,558 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: The state of the art in memristor-based electronics is evaluated and the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing is explored.
Abstract: A memristor is a resistive device with an inherent memory. The theoretical concept of a memristor was connected to physically measured devices in 2008 and since then there has been rapid progress in the development of such devices, leading to a series of recent demonstrations of memristor-based neuromorphic hardware systems. Here, we evaluate the state of the art in memristor-based electronics and explore where the future of the field lies. We highlight three areas of potential technological impact: on-chip memory and storage, biologically inspired computing and general-purpose in-memory computing. We analyse the challenges, and possible solutions, associated with scaling the systems up for practical applications, and consider the benefits of scaling the devices down in terms of geometry and also in terms of obtaining fundamental control of the atomic-level dynamics. Finally, we discuss the ways we believe biology will continue to provide guiding principles for device innovation and system optimization in the field. This Perspective evaluates the state of the art in memristor-based electronics and explores the future development of such devices in on-chip memory, biologically inspired computing and general-purpose in-memory computing.

1,231 citations

Journal ArticleDOI
18 Jun 2016
TL;DR: This work proposes a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory, and distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving.
Abstract: Processing-in-memory (PIM) is a promising solution to address the "memory wall" challenges for future computer systems. Prior proposed PIM architectures put additional computation logic in or near memory. The emerging metal-oxide resistive random access memory (ReRAM) has showed its potential to be used for main memory. Moreover, with its crossbar array structure, ReRAM can perform matrix-vector multiplication efficiently, and has been widely studied to accelerate neural network (NN) applications. In this work, we propose a novel PIM architecture, called PRIME, to accelerate NN applications in ReRAM based main memory. In PRIME, a portion of ReRAM crossbar arrays can be configured as accelerators for NN applications or as normal memory for a larger memory space. We provide microarchitecture and circuit designs to enable the morphable functions with an insignificant area overhead. We also design a software/hardware interface for software developers to implement various NNs on PRIME. Benefiting from both the PIM architecture and the efficiency of using ReRAM for NN computation, PRIME distinguishes itself from prior work on NN acceleration, with significant performance improvement and energy saving. Our experimental results show that, compared with a state-of-the-art neural processing unit design, PRIME improves the performance by ~2360× and the energy consumption by ~895×, across the evaluated machine learning benchmarks.

1,197 citations