scispace - formally typeset
Search or ask a question
Author

Misato Ohtani

Bio: Misato Ohtani is an academic researcher from University of Tokyo. The author has contributed to research in topics: Xylem & Arabidopsis. The author has an hindex of 26, co-authored 85 publications receiving 3142 citations. Previous affiliations of Misato Ohtani include Nara Institute of Science and Technology.


Papers
More filters
Journal ArticleDOI
John L. Bowman1, Takayuki Kohchi2, Katsuyuki T. Yamato3, Jerry Jenkins4, Shengqiang Shu4, Kimitsune Ishizaki5, Shohei Yamaoka2, Ryuichi Nishihama2, Yasukazu Nakamura6, Frédéric Berger7, Catherine Adam4, Shiori S Aki8, Felix Althoff9, Takashi Araki2, Mario A. Arteaga-Vazquez10, Sureshkumar Balasubrmanian1, Kerrie Barry4, Diane Bauer4, Christian R. Boehm11, Liam N. Briginshaw1, Juan Caballero-Pérez12, Bruno Catarino13, Feng Chen14, Shota Chiyoda2, Mansi Chovatia4, Kevin M. Davies15, Mihails Delmans11, Taku Demura8, Tom Dierschke1, Tom Dierschke9, Liam Dolan13, Ana E. Dorantes-Acosta10, D. Magnus Eklund16, D. Magnus Eklund1, Stevie N. Florent1, Eduardo Flores-Sandoval1, Asao Fujiyama6, Hideya Fukuzawa2, Bence Galik, Daniel Grimanelli17, Jane Grimwood4, Ueli Grossniklaus18, Takahiro Hamada19, Jim Haseloff11, Alexander J. Hetherington13, Asuka Higo2, Yuki Hirakawa20, Yuki Hirakawa1, Hope Hundley4, Yoko Ikeda21, Keisuke Inoue2, Shin-ichiro Inoue20, Sakiko Ishida2, Qidong Jia14, Mitsuru Kakita20, Takehiko Kanazawa19, Takehiko Kanazawa22, Yosuke Kawai23, Tomokazu Kawashima24, Tomokazu Kawashima25, Megan Kennedy4, Keita Kinose2, Toshinori Kinoshita20, Yuji Kohara6, Eri Koide2, Kenji Komatsu26, Sarah Kopischke9, Minoru Kubo8, Junko Kyozuka23, Ulf Lagercrantz16, Shih-Shun Lin27, Erika Lindquist4, Anna Lipzen4, Chia-Wei Lu27, Efraín De Luna, Robert A. Martienssen28, Naoki Minamino22, Naoki Minamino19, Masaharu Mizutani5, Miya Mizutani2, Nobuyoshi Mochizuki2, Isabel Monte29, Rebecca A. Mosher30, Hideki Nagasaki, Hirofumi Nakagami31, Satoshi Naramoto23, Kazuhiko Nishitani23, Misato Ohtani8, Takashi Okamoto32, Masaki Okumura20, Jeremy Phillips4, Bernardo Pollak11, Anke Reinders33, Moritz Rövekamp18, Ryosuke Sano8, Shinichiro Sawa34, Marc W. Schmid18, Makoto Shirakawa2, Roberto Solano29, Alexander Spunde4, Noriyuki Suetsugu2, Sumio Sugano19, Akifumi Sugiyama2, Rui Sun2, Yutaka Suzuki19, Mizuki Takenaka35, Daisuke Takezawa36, Hirokazu Tomogane2, Masayuki Tsuzuki19, Takashi Ueda22, Masaaki Umeda8, John M. Ward33, Yuichiro Watanabe19, Kazufumi Yazaki2, Ryusuke Yokoyama23, Yoshihiro Yoshitake2, Izumi Yotsui, Sabine Zachgo9, Jeremy Schmutz4 
05 Oct 2017-Cell
TL;DR: Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant.

774 citations

Journal ArticleDOI
TL;DR: Focusing on the NAC-MYB-based transcriptional network, this review discusses the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support.
Abstract: Plant cells biosynthesize primary cell walls in all cells and produce secondary cell walls (SCWs) in specific cell types that conduct water and/or provide mechanical support, such as xylem vessels and fibers. The characteristic mechanical stiffness, chemical recalcitrance, and hydrophobic nature of SCWs result from the organization of SCW-specific biopolymers, i.e., highly ordered cellulose, hemicellulose, and lignin. Synthesis of these SCW-specific biopolymers requires SCW-specific enzymes that are regulated by SCW-specific transcription factors. In this review, we summarize our current knowledge of the transcriptional regulation of SCW formation in plant cells. Advances in research on SCW biosynthesis during the past decade have expanded our understanding of the transcriptional regulation of SCW formation, particularly the functions of the NAC and MYB transcription factors. Focusing on the NAC-MYB-based transcriptional network, we discuss the regulatory systems that evolved in land plants to modify the cell wall to serve as a key component of structures that conduct water and provide mechanical support.

313 citations

Journal ArticleDOI
TL;DR: Findings indicated that VND7 upregulates, directly and/or indirectly, many genes involved in a wide range of processes in xylem vessel differentiation, and that its target genes are partially different from those of NSTs.
Abstract: Summary The Arabidopsis thaliana NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), acts as a key regulator of xylem vessel differentiation. In order to identify direct target genes of VND7, we performed global transcriptome analysis using Arabidopsis transgenic lines in which VND7 activity could be induced post-translationally. This analysis identified 63 putative direct target genes of VND7, which encode a broad range of proteins, such as transcription factors, IRREGULAR XYLEM proteins and proteolytic enzymes, known to be closely associated with xylem vessel formation. Recombinant VND7 protein binds to several promoter sequences present in candidate direct target genes: specifically, in the promoter of XYLEM CYSTEINE PEPTIDASE1, two distinct regions were demonstrated to be responsible for VND7 binding. We also found that expression of VND7 restores secondary cell wall formation in the fiber cells of inflorescence stems of nst1 nst3 double mutants, as well as expression of NAC SECONDARY WALL THICKENING PROMOTING FACTOR3 (NST3, however, the vessel-type secondary wall deposition was observed only as a result of VND7 expression. These findings indicated that VND7 upregulates, directly and/or indirectly, many genes involved in a wide range of processes in xylem vessel differentiation, and that its target genes are partially different from those of NSTs.

305 citations

Journal ArticleDOI
TL;DR: Data suggest that VNI2 regulates xylem cell specification as a transcriptional repressor that interacts with VND proteins and possibly also with other NAC domain proteins.
Abstract: The Arabidopsis thaliana NAC domain transcription factor VASCULAR-RELATED NAC-DOMAIN7 (VND7) acts as a master regulator of xylem vessel differentiation. To understand the mechanism by which VND7 regulates xylem vessel differentiation, we used a yeast two-hybrid system to screen for proteins that interact with VND7 and identified cDNAs encoding two NAC domain proteins, VND-INTERACTING1 (VNI1) and VNI2. Binding assays demonstrated that VNI2 effectively interacts with VND7 and the VND family proteins, VND1-5, as well as with other NAC domain proteins at lower affinity. VNI2 is expressed in both xylem and phloem cells in roots and inflorescence stems. The expression of VNI2 overlaps with that of VND7 in elongating vessel precursors in roots. VNI2 contains a predicted PEST motif and a C-terminally truncated VNI2 protein, which lacks part of the PEST motif, is more stable than full-length VNI2. Transient reporter assays showed that VNI2 is a transcriptional repressor and can repress the expression of vessel-specific genes regulated by VND7. Expression of C-terminally truncated VNI2 under the control of the VND7 promoter inhibited the normal development of xylem vessels in roots and aerial organs. These data suggest that VNI2 regulates xylem cell specification as a transcriptional repressor that interacts with VND proteins and possibly also with other NAC domain proteins.

305 citations

Journal ArticleDOI
TL;DR: A glucocorticoid-mediated posttranslational induction system of VND6 and VND7 is reported, which worked in poplar (Populus tremula × tremuloides) trees and in suspension cultures of cells from Arabidopsis and tobacco (Nicotiana tabacum).
Abstract: We previously showed that the VASCULAR-RELATED NAC-DOMAIN6 (VND6) and VND7 genes, which encode NAM/ATAF/CUC domain protein transcription factors, act as key regulators of xylem vessel differentiation. Here, we report a glucocorticoid-mediated posttranslational induction system of VND6 and VND7. In this system, VND6 or VND7 is expressed as a fused protein with the activation domain of the herpes virus VP16 protein and hormone-binding domain of the animal glucocorticoid receptor, and the protein's activity is induced by treatment with dexamethasone (DEX), a glucocorticoid derivative. Upon DEX treatment, transgenic Arabidopsis (Arabidopsis thaliana) plants carrying the chimeric gene exhibited transdifferentiation of various types of cells into xylem vessel elements, and the plants died. Many genes involved in xylem vessel differentiation, such as secondary wall biosynthesis and programmed cell death, were up-regulated in these plants after DEX treatment. Chemical analysis showed that xylan, a major hemicellulose component of the dicot secondary cell wall, was increased in the transgenic plants after DEX treatment. This induction system worked in poplar (Populus tremula x tremuloides) trees and in suspension cultures of cells from Arabidopsis and tobacco (Nicotiana tabacum); more than 90% of the tobacco BY-2 cells expressing VND7-VP16-GR transdifferentiated into xylem vessel elements after DEX treatment. These data demonstrate that the induction systems controlling VND6 and VND7 activities can be used as powerful tools for understanding xylem cell differentiation.

238 citations


Cited by
More filters
Proceedings Article
01 Jan 1994
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.

2,134 citations

Journal ArticleDOI
TL;DR: Internal Organization of the Plant Body, from embryo to the Adult Plant, and some Factors in Development of Secondary Xylem: Common Types of Secondary Growth.
Abstract: INTRODUCTION. Internal Organization of the Plant Body. Summary of Types of Cells and Tissues. General References. DEVELOPMENT OF THE SEED PLANT. The Embryo. From embryo to the Adult Plant. Apical Meristems and Their Derivatives. Differentiation, Specialization, and Morphogenesis. References. THE CELL. Cytoplasm. Nucleus. Plastids. Mitochondria. Microbodies. Vacuoles. Paramural Bodies. Ribosomes. Dictyosomes. Endoplasmic Reticulum. Lipid Globules. Microtubules. Ergastic Substances. References. CELL WALL. Macromolecular Components and Their Organization in the Wall. Cell Wall Layers. Intercellular Spaces. Pits, Primary Pit--Fields, and Plasmodesmata. Origin of Cell Wall During Cell Division. Growth of Cell Wall. References. PARENCHYMA AND COLLENCHYMA. Parenchyma. Collenchyma. References. SCLERENCHYMA. Sclereids. Fibers. Development of Sclereids and Fibers. References. EPIDERMIS. Composition. Developmental Aspects. Cell Wall. Stomata. Trichomes. References. XYLEM: GENERAL STRUCTURE AND CELL TYPES. Gross Structure of Secondary Xylem. Cell Types in the Secondary Xylem. Primary Xylem. Differentiation of Tracheary Elements. References. XYLEM: VARIATION IN WOOD STRUCTURE. Conifer Wood. Dicotyledon Wood. Some Factors in Development of Secondary Xylem. Identification of Wood. References. VASCULAR CAMBIUM. Organization of Cambium. Developmental Changes in the Initial Layer. Patterns and Causal Relations in Cambial Activity. References. PHLOEM. Cell Types. Primary Phloem. Secondary Phloem. References. PERIDERM. Structure of Periderm and Related Tissues. Development of Periderm. Outer Aspect of Bark in Relation to Structure. Lenticels. References. SECRETORY STRUCTURES. External Secretory Structures. Internal Secretory Structures. References. THE ROOT: PRIMARY STATE OF GROWTH. Types of Roots. Primary Structure. Development. References. THE ROOT: SECONDARY STATE OF GROWTH AND ADVENTITIOUS ROOTS. Common Types of Secondary Growth. Variations in Secondary Growths. Physiologic Aspects of Secondary Growth in Roots. Adventitious Roots. References. THE STEM: PRIMARY STATE OF GROWTH. External Morphology. Primary Structure. Development. References. THE STEM: SECONDARY GROWTH AND STRUCTURAL TYPES. Secondary Growth. Types of Stems. References. THE LEAF: BASIC STRUCTURE AND DEVELOPMENT. Morphology. Histology of Angiosperm Leaf. Development. Abscission. References. THE LEAF: VARIATIONS IN STRUCTURE. Leaf Structure and Environment. Dicotyledon Leaves. Monocotyledon Leaves. Gymnosperm Leaves. References. THE FLOWER: STRUCTURE AND DEVELOPMENT. Concept. Structure. Development. References. THE FLOWER: REPRODUCTIVE CYCLE. Microsporogenesis. Pollen. Male Gametophyte. Megasporogenesis. Female Gametophyte. Fertilization. References. THE FRUIT. Concept and Classification. The Fruit Wall. Fruit Types. Fruit Growths. Fruit Abscission. References. THE SEED. Concept and Morphology. Seed Development. Seed Coat. Nutrient Storage Tissues. References. EMBRYO AND SEEDLING. Mature Embryo. Development of Embryo. Classification of Embryos. Seedling. References. Glossary. Index.

1,454 citations

Journal ArticleDOI
31 Oct 2019-Nature
TL;DR: It is found that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns.
Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.

907 citations

Journal ArticleDOI
TL;DR: Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance and indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches.

799 citations