scispace - formally typeset
Search or ask a question
Author

Mitsuhiro Fukuda

Bio: Mitsuhiro Fukuda is an academic researcher from Osaka University. The author has contributed to research in topics: Cyclotron & Beam (structure). The author has an hindex of 17, co-authored 81 publications receiving 1119 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of ACh on the spread of excitation initiated by stimulation at the white matter/layer VI (WM/VI) was investigated in a rat.
Abstract: Optical recording with a voltage-sensitive dye was performed in visual cortical slices of the rat to determine the effect of acetylcholine (ACh) on the spread of excitation. In the presence of ACh, the spread of excitation initiated by stimulation at the white matter/layer VI (WM/VI) was greatly suppressed throughout the cortex, with less suppression in the middle layers. By comparing the effect of ACh with that of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), the fraction of the synaptic component that was sensitive to ACh was evaluated. ACh suppressed approximately 40-50% (maximum 55.8%, n = 11) of the initial synaptic component in the superficial and deep layers. In the middle, however, the effect was weakest and only approximately 20-30% (minimum 20.9%, n = 11) of the initial synaptic component was suppressed. On the basis of histological analysis, the region with the weakest ACh effect extended from upper V to lower II/III. To identify the site of ACh action in terms of pre- versus postsynaptic localization, exogenous glutamate was applied. Because ACh did not suppress the excitation induced by glutamate, the site of the ACh action was indicated to be presynaptic. When layer II/III was stimulated instead of WM/VI, the suppression was uniform throughout the cortex. A muscarinic receptor antagonist, atropine, blocked the suppression by ACh. In conclusion, our results indicate the following two points. First, ACh strongly suppresses intracortical connectivity through presynaptic muscarinic receptors. Secondly, in contrast to the intracortical connection, some group(s) of fibres, possibly thalamocortical afferents that arise from white matter and terminate in the middle cortical layers are suppressed much less by ACh. While ACh has been reported to have confusingly diverse effects, e.g. direct depolarization and hyperpolarization as well as synaptic facilitation and suppression, its effect on the propagation of excitation is very clear; suppression on intracortical connection, leaving thalamocortical inputs rather intact. We postulate that cholinergic innervation enables the afferent input to have a relatively dominant effect in the cortex.

181 citations

Journal ArticleDOI
TL;DR: The results suggest that, unlike the expectation from deoxyhemoglobin-based optical imaging studies, the highest BOLD signals are localized to the sites of increased neural activity when column-nonselective signals are suppressed.
Abstract: Whether conventional gradient-echo (GE) blood oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is able to map submillimeter-scale functional columns remains debatable mainly because of the spatially nonspecific large vessel contribution, poor sensitivity and reproducibility, and lack of independent evaluation. Furthermore, if the results from optical imaging of intrinsic signals are directly applicable, regions with the highest BOLD signals may indicate neurally inactive domains rather than active columns when multiple columns are activated. To examine these issues, we performed BOLD fMRI at a magnetic field of 9.4 tesla to map orientation-selective columns of isoflurane-anesthetized cats. We could not convincingly map orientation columns using conventional block-design stimulation and differential analysis method because of large fluctuations of signals. However, we successfully obtained GE BOLD iso-orientation maps with high reproducibility (r = 0.74) using temporally encoded continuous cyclic orientation stimulation with Fourier data analysis, which reduces orientation-nonselective signals such as draining artifacts and is less sensitive to signal fluctuations. We further reduced large vessel contribution using the improved spin-echo (SE) BOLD method but with overall decreased sensitivity. Both GE and SE BOLD iso-orientation maps excluding large pial vascular regions were significantly correlated to maps with a known neural interpretation, which were obtained in contrast agent-aided cerebral blood volume fMRI and total hemoglobin-based optical imaging of intrinsic signals at a hemoglobin iso-sbestic point (570 nm). These results suggest that, unlike the expectation from deoxyhemoglobin-based optical imaging studies, the highest BOLD signals are localized to the sites of increased neural activity when column-nonselective signals are suppressed.

91 citations

Journal ArticleDOI
TL;DR: The neurovascular relationship differed between these 2 stimulation pathways, but photo-stimulation-evoked changes in neural and hemodynamic activities were linearly correlated.
Abstract: Hemodynamic responses are commonly used to map brain activity; however, their spatial limits have remained unclear because of the lack of a well-defined and malleable spatial stimulus. To examine the properties of neural activity and hemodynamic responses, multiunit activity, local field potential, cerebral blood volume (CBV)-sensitive optical imaging, and laser Doppler flowmetry were measured from the somatosensory cortex of transgenic mice expressing Channelrhodopsin-2 in cortex Layer 5 pyramidal neurons. The magnitude and extent of neural and hemodynamic responses were modulated using different photo-stimulation parameters and compared with those induced by somatosensory stimulation. Photo-stimulation-evoked spiking activity across cortical layers was similar to forelimb stimulation, although their activity originated in different layers. Hemodynamic responses induced by forelimb- and photo-stimulation were similar in magnitude and shape, although the former were slightly larger in amplitude and wider in extent. Altogether, the neurovascular relationship differed between these 2 stimulation pathways, but photo-stimulation-evoked changes in neural and hemodynamic activities were linearly correlated. Hemodynamic point spread functions were estimated from the photo-stimulation data and its full-width at half-maximum ranged between 103 and 175 µm. Therefore, submillimeter functional structures separated by a few hundred micrometers may be resolved using hemodynamic methods, such as optical imaging and functional magnetic resonance imaging.

84 citations

Journal ArticleDOI
TL;DR: Results indicate that the vasculature is regulated within individual layers and CBV fMRI has a higher fidelity to the evoked neuronal activity compared with BOLD, which is significant for understanding the neuronal origin and spatial specificity of hemodynamic responses, especially for the interpretation of laminar-resolution fMRI.
Abstract: High-resolution functional magnetic resonance imaging (fMRI) detects localized neuronal activity via the hemodynamic response, but it is unclear whether it accurately identifies neuronal activity specific to individual layers. To address this issue, we preferentially evoked neuronal activity in superficial, middle, and deep layers of the rat olfactory bulb: the glomerular layer by odor (5% amyl acetate), the external plexiform layer by electrical stimulation of the lateral olfactory tract (LOT), and the granule cell layer by electrical stimulation of the anterior commissure (AC), respectively. Electrophysiology, laser-Doppler flowmetry of cerebral blood flow (CBF), and blood oxygenation level-dependent (BOLD) and cerebral blood volume-weighted (CBV) fMRI at 9.4 T were performed independently. We found that excitation of inhibitory granule cells by stimulating LOT and AC decreased the spontaneous multi-unit activities of excitatory mitral cells and subsequently increased CBF, CBV, and BOLD signals. Odor stimulation also increased the hemodynamic responses. Furthermore, the greatest CBV fMRI responses were discretely separated into the same layers as the evoked neuronal activities for all three stimuli, whereas BOLD was poorly localized with some exception to the poststimulus undershoot. In addition, the temporal dynamics of the fMRI responses varied depending on the stimulation pathway, even within the same layer. These results indicate that the vasculature is regulated within individual layers and CBV fMRI has a higher fidelity to the evoked neuronal activity compared with BOLD. Our findings are significant for understanding the neuronal origin and spatial specificity of hemodynamic responses, especially for the interpretation of laminar-resolution fMRI. SIGNIFICANCE STATEMENT Functional magnetic resonance imaging (fMRI) is a noninvasive, in vivo technique widely used to map function of the entire brain, including deep structures, in animals and humans. However, it measures neuronal activity indirectly by way of the vascular response. It is currently unclear how finely the hemodynamic response is regulated within single cortical layers and whether increased inhibitory neuronal activities affect fMRI signal changes. Both laminar specificity and the neural origins of fMRI are important to interpret functional maps properly, which we investigated by activating discrete rat olfactory bulb circuits.

58 citations

Journal ArticleDOI
TL;DR: BDNF had a hypertrophic action on afferents irrespective of visual inputs so that it desegregated OD columns in the visual cortex of deprived and normal kittens, but this action was not seen in the adults, substantiating its hypothesized trophic role in plasticity of OD Columns in the developing visual cortex.
Abstract: Segregation and stabilization of thalamocortical afferents to eye-specific patches, so-called "ocular dominance (OD) columns," in visual cortex are hypothesized to be based on activity-dependent competition for trophic factors such as brain-derived neurotrophic factor (BDNF) between afferents representing the two eyes during the critical period of postnatal development. To test this hypothesis we observed effects of an intracortical infusion of BDNF on OD columns in monocularly deprived kittens and also compared effects between normal kittens and adult cats. BDNF had a hypertrophic action on afferents irrespective of visual inputs so that it desegregated OD columns in the visual cortex of deprived and normal kittens, but this action was not seen in the adults, substantiating its hypothesized trophic role in plasticity of OD columns in the developing visual cortex.

52 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
19 May 2005-Neuron
TL;DR: This formulation is consistent with a wealth of physiological, pharmacological, and behavioral data implicating acetylcholine and norepinephrine in specific aspects of a range of cognitive processes and suggests a class of attentional cueing tasks that involve both neuromodulators and how their interactions may be part-antagonistic, part-synergistic.

1,522 citations

01 Sep 1994
TL;DR: In this article, the authors present a review of Charged Particle Dynamics and Focusing Systems without Space Charge, including Linear Beam Optics with Space Charge and Self-Consistent Theory of Beams.
Abstract: Review of Charged Particle Dynamics. Beam Optics and Focusing Systems Without Space Charge. Linear Beam Optics with Space Charge. Self-Consistent Theory of Beams. Emittance Variation. Beam Physics Research from 1993 to 2007. Appendices. List of Frequently Used Symbols. Bibliography. Index.

1,311 citations

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of known critical periods across several systems and species and delineates a number of emerging principles: functional competition between inputs, role for electrical activity, structural consolidation, regulation by experience, special role for inhibition in the CNS, potent influence of attention and motivation, unique timing and duration.
Abstract: ▪ Abstract Neuronal circuits are shaped by experience during critical periods of early postnatal life. The ability to control the timing, duration, and closure of these heightened levels of brain plasticity has recently become experimentally accessible, especially in the developing visual system. This review summarizes our current understanding of known critical periods across several systems and species. It delineates a number of emerging principles: functional competition between inputs, role for electrical activity, structural consolidation, regulation by experience (not simply age), special role for inhibition in the CNS, potent influence of attention and motivation, unique timing and duration, as well as use of distinct molecular mechanisms across brain regions and the potential for reactivation in adulthood. A deeper understanding of critical periods will open new avenues to “nurture the brain”—from international efforts to link brain science and education to improving recovery from injury and devis...

1,163 citations

Journal ArticleDOI

[...]

01 Dec 2007-BMJ

1,096 citations