Author
Mitsuhiro Higashihata
Bio: Mitsuhiro Higashihata is an academic researcher from Kyushu University. The author has contributed to research in topics: Pulsed laser deposition & Nanowire. The author has an hindex of 16, co-authored 109 publications receiving 903 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: A new fabrication method of a UV photosensor based on ZnO nanowires using dielectrophoresis using DEP technology could detect UV light down to 10 nW cm(-2) intensity, indicating a higher UV sensitivity.
Abstract: Wide-gap semiconductors with nanostructures such as nanoparticles, nanorods, nanowires are promising as a new type of UV photosensor. Recently, ZnO (zinc oxide) nanowires have been extensively investigated for electronic and optoelectronic device applications. ZnO nanowires are expected to have good UV response due to their large surface area to volume ratio, and they might enhance the performance of UV photosensors. In this paper, a new fabrication method of a UV photosensor based on ZnO nanowires using dielectrophoresis is demonstrated. Dielectrophoresis (DEP) is the electrokinetic motion of dielectrically polarized materials in non-uniform electric fields. ZnO nanowires, which were synthesized by nanoparticle-assisted pulsed-laser deposition (NAPLD) and suspended in ethanol, were trapped in the microelectrode gap where the electric field became higher. The trapped ZnO nanowires were aligned along the electric field line and bridged the electrode gap. Under UV irradiation, the conductance of the DEP-trapped ZnO nanowires exponentially increased with a time constant of a few minutes. The slow UV response of ZnO nanowires was similar to that observed with ZnO thin films and might be attributed to adsorption and photodesorption of ambient gas molecules such as O2 or H2O. At higher UV intensity, the conductance response became larger. The DEP-fabricated ZnO nanowire UV photosensor could detect UV light down to 10 nW cm−2 intensity, indicating a higher UV sensitivity than ZnO thin films or ZnO nanowires assembled by other methods.
224 citations
[...]
TL;DR: In this article, a p-GaN/n-ZnO heterojunction light-emitting diodes (LEDs) with embedded ZnO nanowires were obtained by fabricating p-Mg film structures.
Abstract: Vertically aligned ZnO nanowires were successfully grown on the sapphire substrate by nanoparticle-assisted pulsed laser deposition (NAPLD), which were employed in fabricating the ZnO nanowire-based heterojunction structures. p-GaN/n-ZnO heterojunction light-emitting diodes (LEDs) with embedded ZnO nanowires were obtained by fabricating p-GaN:Mg film/ZnO nanowire/n-ZnO film structures. The current–voltage measurements showed a typical diode characteristic with a threshold voltage of about 2.5 V. Electroluminescence (EL) emission having the wavelength of about 380 nm was observed under forward bias in the heterojunction diodes and was intensified by increasing the applied voltage up to 30 V.
67 citations
[...]
TL;DR: In this article, the fluorescence characteristics of different Ce3+:Er3+-codoped fluorozirconate host glasses, such as fluorocoronate and fluoroindate glass, are reported.
Abstract: The fluorescence characteristics of different Ce3+:Er3+-codoped fluoride host glasses, such as fluorozirconate and fluoroindate glass, are reported. It is shown that Ce3+ codoping into Er3+ doped fluoride glasses resulted in a quenching of Er3+ ions from the 4I11/2 to the 4I13/2 state, and the branching ratio for the Er3+ 4I11/2→4I13/2 transition increased from 0.20 to over 0.80 by codoping 2.0 mol % Ce3+. Further, the fluorescence quantum yield at 1.55 μm was also significantly improved. A Ce3+:Er3+-codoped fluorozirconate fiber laser operating at 1.55 μm band with 980 nm excitation has been realized for the first time, which clearly indicates the effectiveness of Ce3+ codoping.
60 citations
[...]
TL;DR: In this paper, a zinc oxide (ZnO) micro/nanosphere crystal was fabricated by simply ablating a ZnO sintered target, which was much more productive method without any time-consuming crystal growth process.
Abstract: We report ultraviolet (UV) whispering-gallery-mode (WGM) lasing in a zinc oxide (ZnO) micro/nanosphere crystal fabricated by simply ablating a ZnO sintered target, which was much more productive method without any time-consuming crystal-growth process. The lasing spectral mode spacing was controlled by changing the diameters, and single-mode lasing was realized from a ZnO nanosphere. Experimental results were in good agreement with predictions from WGM theories. Since the ZnO sphere can operate as an active WGM refractometric sensor for small molecules in UV region, high sensitivity enhanced by high quality factor, refractive index, and wavelength dispersion can be expected.
40 citations
[...]
TL;DR: The oscillation mechanism inside a ZnO nanosheet is attributed to the micro-cavity effect, based on the three-dimensional laser-field simulation, which indicates that the ZnOsheet is a superior gain medium for an ultraviolet laser.
Abstract: We report the lasing characteristics of a single ZnO nanosheet optically pumped by ultraviolet laser beam. The ZnO nanosheets were synthesized by a carbothermal chemical vapor deposition method. The ZnO nanosheets dispersed on a silica glass substrate were excited by the third-harmonic of a Q-switched Nd:YAG laser (λ = 355 nm, τ = 5 ns) and photoluminescence from a single ZnO nanosheet was observed. The observed emission spectra showed the obvious lasing characteristics having modal structure and threshold characteristics. The threshold power for lasing was measured to be 50 kW/cm2, which was much lower than 150 kW/cm2, the threshold power of the reference ZnO nanowire. It indicates that the ZnO nanosheet is a superior gain medium for an ultraviolet laser. The oscillation mechanism inside a ZnO nanosheet is attributed to the micro-cavity effect, based on the three-dimensional laser-field simulation.
37 citations
Cited by
More filters
[...]
TL;DR: Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products higher than approximately 10 GHz, which promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.
Abstract: ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G ∼ 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (τ ∼ 20 ns) and slow (τ ∼ 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than ∼10 GHz. The high gain and low power consumption of NW photodetec...
2,271 citations
[...]
TL;DR: ZnO has received much attention over the past few years because it has a wide range of properties that depend on doping, including a range of conductivity from metallic to insulating (including n-type and p-type conductivity), high transparency, piezoelectricity, widebandgap semiconductivity, room-temperature ferromagnetism, and huge magneto-optic and chemical-sensing effects.
Abstract: ZnO has received much attention over the past few years because it has a wide range of properties that depend on doping, including a range of conductivity from metallic to insulating (including n-type and p-type conductivity), high transparency, piezoelectricity, wide-bandgap semiconductivity, room-temperature ferromagnetism, and huge magneto-optic and chemical-sensing effects. Without much effort, it can be grown in many different nanoscale forms, thus allowing various novel devices to be achieved. We review recent studies of ZnO nanostructures, fabrication, novel device applications, and its potential as an electron-acceptor material in hybrid solar cells. Control of its rich defect chemistry, which is critical for controlling properties but has not been widely addressed in the context of novel applications, is also discussed.
1,688 citations
[...]
TL;DR: A comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods can be found in this paper, where the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronics, and energy harvesting devices.
Abstract: One-dimensional (1D) ZnO nanostructures have been studied intensively and extensively over the last decade not only for their remarkable chemical and physical properties, but also for their current and future diverse technological applications. This article gives a comprehensive overview of the progress that has been made within the context of 1D ZnO nanostructures synthesized via wet chemical methods. We will cover the synthetic methodologies and corresponding growth mechanisms, different structures, doping and alloying, position-controlled growth on substrates, and finally, their functional properties as catalysts, hydrophobic surfaces, sensors, and in nanoelectronic, optical, optoelectronic, and energy harvesting devices.
1,127 citations
[...]
TL;DR: In this paper, a brief overview of synthesis methods of ZnO nanostructures, with particular focus on the growth of perpendicular arrays of nanorods/nanowires which are of interest for optoelectronic device applications.
Abstract: In recent years, there has been increasing interest in ZnO nanostructures due to their variety of morphologies and availability of simple and low cost processing. While there are still unanswered questions concerning fundamental properties of this material, in particular those related to defects and visible luminescence lines, great progress has been made in synthesis methods and device applications of ZnO nanostructures. In this review, we will provide a brief overview of synthesis methods of ZnO nanostructures, with particular focus on the growth of perpendicular arrays of nanorods/nanowires which are of interest for optoelectronic device applications. Then, we will provide an overview of material properties of ZnO nanostructures, issues related to doping with various elements to achieve either p- or n-type conductivity. Doping to alter optical or magnetic properties will also be discussed. Then, issues related to practical problems in achieving good electrical contacts to nanostructures will be presented. Finally, we will provide an overview of applications of ZnO nanostructures to light-emitting devices, photodetectors and solar cells.
841 citations
[...]
TL;DR: In this article, the authors review the fundamental properties of ZnO and of ZNO-based nanostructures, doping as well as present and future applications with emphasis on the electronic and optical properties including stimulated emission.
Abstract: Several hundred thousands of tons of ZnO are used by per year, e.g. as an additive to concrete or to rubber. In the field of optoelectronics, ZnO holds promises as a material for a blue/UV optoelectronics, alternatively to GaN, as a cheap, transparent, conducting oxide, as a material for electronic circuits, which are transparent in the visible or for semiconductor spintronics. The main problem is presently, however, a high, reproducible and stable p-doping. We review in this contribution partly critically the material growth, fundamental properties of ZnO and of ZnO-based nanostructures, doping as well as present and future applications, with emphasis on the electronic and optical properties including stimulated emission. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
830 citations