scispace - formally typeset
Search or ask a question
Author

Mitzi I. Kuroda

Bio: Mitzi I. Kuroda is an academic researcher from Brigham and Women's Hospital. The author has contributed to research in topics: Dosage compensation & Chromatin. The author has an hindex of 58, co-authored 114 publications receiving 14396 citations. Previous affiliations of Mitzi I. Kuroda include University of North Carolina at Chapel Hill & Baylor College of Medicine.


Papers
More filters
Journal ArticleDOI
02 Nov 2000-Nature
TL;DR: Two small RNAs regulate the timing of Caenorhabditis elegans development and may control late temporal transitions during development across animal phylogeny.
Abstract: Two small RNAs regulate the timing of Caenorhabditis elegans development. Transition from the first to the second larval stage fates requires the 22-nucleotide lin-4 RNA and transition from late larval to adult cell fates requires the 21-nucleotide let-7 RNA. The lin-4 and let-7 RNA genes are not homologous to each other, but are each complementary to sequences in the 3' untranslated regions of a set of protein-coding target genes that are normally negatively regulated by the RNAs. Here we have detected let-7 RNAs of ~21 nucleotides in samples from a wide range of animal species, including vertebrate, ascidian, hemichordate, mollusc, annelid and arthropod, but not in RNAs from several cnidarian and poriferan species, Saccharomyces cerevisiae, Escherichia coli or Arabidopsis. We did not detect lin-4 RNA in these species. We found that let-7 temporal regulation is also conserved: let-7 RNA expression is first detected at late larval stages in C. elegans and Drosophila , at 48 hours after fertilization in zebrafish, and in adult stages of annelids and molluscs. The let-7 regulatory RNA may control late temporal transitions during development across animal phylogeny.

2,532 citations

Journal ArticleDOI
Sushmita Roy1, Jason Ernst1, Peter V. Kharchenko2, Pouya Kheradpour1, Nicolas Nègre3, Matthew L. Eaton4, Jane M. Landolin5, Christopher A. Bristow1, Lijia Ma3, Michael F. Lin1, Stefan Washietl6, Bradley I. Arshinoff7, Ferhat Ay8, Patrick E. Meyer9, Nicolas Robine10, Nicole L. Washington5, Luisa Di Stefano2, Eugene Berezikov11, Christopher D. Brown3, Rogerio Candeias6, Joseph W. Carlson5, Adrian Carr12, Irwin Jungreis1, Daniel Marbach1, Rachel Sealfon1, Michael Y. Tolstorukov2, Sebastian Will6, Artyom A. Alekseyenko2, Carlo G. Artieri13, Benjamin W. Booth5, Angela N. Brooks14, Qi Dai10, Carrie A. Davis15, Michael O. Duff16, X. Feng, Andrey A. Gorchakov2, Tingting Gu17, Jorja G. Henikoff10, Philipp Kapranov18, Renhua Li13, Heather K. MacAlpine4, John H. Malone13, Aki Minoda5, Jared T. Nordman6, Katsutomo Okamura10, Marc D. Perry7, Sara K. Powell4, Nicole C. Riddle17, Akiko Sakai2, Anastasia Samsonova2, Jeremy E. Sandler5, Yuri B. Schwartz2, Noa Sher6, Rebecca Spokony3, David Sturgill13, Marijke J. van Baren17, Kenneth H. Wan5, Li Yang16, Charles Yu5, Elise A. Feingold13, Peter J. Good13, Mark S. Guyer13, Rebecca F. Lowdon13, Kami Ahmad2, Justen Andrews19, Bonnie Berger1, Steven E. Brenner14, Michael R. Brent17, Lucy Cherbas19, Sarah C. R. Elgin17, Thomas R. Gingeras18, Robert L. Grossman3, Roger A. Hoskins5, Thomas C. Kaufman19, W. J. Kent20, Mitzi I. Kuroda2, Terry L. Orr-Weaver6, Norbert Perrimon2, Vincenzo Pirrotta21, James W. Posakony22, Bing Ren22, Steven Russell12, Peter Cherbas19, Brenton R. Graveley16, Suzanna E. Lewis5, Gos Micklem12, Brian Oliver13, Peter J. Park2, Susan E. Celniker5, Steven Henikoff23, Gary H. Karpen14, Eric C. Lai10, David M. MacAlpine4, Lincoln Stein7, Kevin P. White3, Manolis Kellis1 
24 Dec 2010-Science
TL;DR: The Drosophila Encyclopedia of DNA Elements (modENCODE) project as mentioned in this paper has been used to map transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines.
Abstract: To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.

1,102 citations

Journal ArticleDOI
24 Mar 2011-Nature
TL;DR: In this article, the authors present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns.
Abstract: Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.

787 citations

Journal Article
TL;DR: It is found that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts, and a diversity of signatures among Polycomb targets that include a subset with paused polymerase.
Abstract: Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.

763 citations

Journal ArticleDOI
TL;DR: In this paper, a hybridization-based technique called Capture Hybridization Analysis of RNA targets (CHART) was used to enrich the DNA and protein targets of endogenous lncRNAs from flies and humans.
Abstract: Long noncoding RNAs (lncRNAs) have important regulatory roles and can function at the level of chromatin. To determine where lncRNAs bind to chromatin, we developed capture hybridization analysis of RNA targets (CHART), a hybridization-based technique that specifically enriches endogenous RNAs along with their targets from reversibly cross-linked chromatin extracts. CHART was used to enrich the DNA and protein targets of endogenous lncRNAs from flies and humans. This analysis was extended to genome-wide mapping of roX2, a well-studied ncRNA involved in dosage compensation in Drosophila. CHART revealed that roX2 binds at specific genomic sites that coincide with the binding sites of proteins from the male-specific lethal complex that affects dosage compensation. These results reveal the genomic targets of roX2 and demonstrate how CHART can be used to study RNAs in a manner analogous to chromatin immunoprecipitation for proteins.

397 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: Two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events and indicate the existence of multiple RISCs that carry out related but specific biological functions.
Abstract: MicroRNAs are a family of small, non-coding RNAs that regulate gene expression in a sequence-specific manner. The two founding members of the microRNA family were originally identified in Caenorhabditis elegans as genes that were required for the timed regulation of developmental events. Since then, hundreds of microRNAs have been identified in almost all metazoan genomes, including worms, flies, plants and mammals. MicroRNAs have diverse expression patterns and might regulate various developmental and physiological processes. Their discovery adds a new dimension to our understanding of complex gene regulatory networks.

6,282 citations

Journal Article
TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Abstract: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.

6,064 citations