scispace - formally typeset
Search or ask a question
Author

MK Meint Smit

Other affiliations: Delft University of Technology, Philips, AkzoNobel  ...read more
Bio: MK Meint Smit is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Photonic integrated circuit & Laser. The author has an hindex of 51, co-authored 835 publications receiving 14480 citations. Previous affiliations of MK Meint Smit include Delft University of Technology & Philips.


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed description of phased-array operation and design is presented and an overview of the most important applications is given.
Abstract: Wavelength multiplexers, demultiplexers and routers based on optical phased arrays play a key role in multiwavelength telecommunication links and networks. In this paper, a detailed description of phased-array operation and design is presented and an overview is given of the most important applications.

962 citations

Journal ArticleDOI
TL;DR: In this paper, the first laser operation in an electrically pumped metallic-coated nanocavity formed by a semiconductor heterostructure encapsulated in a thin gold film was reported.
Abstract: Metallic cavities can confine light to volumes with dimensions considerably smaller than the wavelength of light. It is commonly believed, however, that the high losses in metals are prohibitive for laser operation in small metallic cavities. Here we report for the first time laser operation in an electrically pumped metallic-coated nanocavity formed by a semiconductor heterostructure encapsulated in a thin gold film. The demonstrated lasers show a low threshold current and their dimensions are smaller than the smallest electrically pumped lasers reported so far. With dimensions comparable to state-of-the-art electronic transistors and operating at low power and high speed, they are a strong contender as basic elements in digital photonic very large-scale integration. Furthermore we demonstrate that metallic-coated nanocavities with modal volumes smaller than dielectric cavities can have moderate quality factors.

824 citations

Journal ArticleDOI
11 Nov 2004-Nature
TL;DR: Simulations show that the ring lasers with extremely small size and low operating power presented here have the potential for much smaller dimensions and switching times, and large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit.
Abstract: The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information1. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data2. Recently, ring lasers with extremely small size and low operating power have been made3,4,5,6,7, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40 µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20 ps with 5.5 fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

621 citations

Journal ArticleDOI
TL;DR: Lasing in Metal-Insulator-Metal waveguides filled with electrically pumped semiconductor cores, with core width dimensions below the diffraction limit is demonstrated, showing that losses in sub-wavelength MIM waveguide can be overcome to create small plasmon mode lasers at wavelengths near 1500 nm.
Abstract: We demonstrate lasing in Metal-Insulator-Metal (MIM) waveguides filled with electrically pumped semiconductor cores, with core width dimensions below the diffraction limit. Furthermore these waveguides propagate a transverse magnetic (TM0) or so called gap plasmon mode [1-4]. Hence we show that losses in sub-wavelength MIM waveguides can be overcome to create small plasmon mode lasers at wavelengths near 1500nm. We also give results showing room temperature lasing in MIM waveguides, with approximately 310nm wide semiconductor cores which propagate a transverse electric mode.

590 citations

Journal ArticleDOI
TL;DR: The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.
Abstract: Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.

512 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Journal ArticleDOI
TL;DR: The basic concepts behind plasmonics-enabled light concentration and manipulation are discussed, an attempt to capture the wide range of activities and excitement in this area is made, and possible future directions are speculated on.
Abstract: The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.

3,953 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: The underlying self-imaging principle in multimode waveguides is described using a guided mode propagation analysis and it is shown that multimode interference couplers offer superior performance, excellent tolerance to polarization and wavelength variations, and relaxed fabrication requirements when compared to alternatives such as directional coupling.
Abstract: This paper presents an overview of integrated optics routing and coupling devices based on multimode interference. The underlying self-imaging principle in multimode waveguides is described using a guided mode propagation analysis. Special issues concerning the design and operation of multimode interference devices are discussed, followed by a survey of reported applications. It is shown that multimode interference couplers offer superior performance, excellent tolerance to polarization and wavelength variations, and relaxed fabrication requirements when compared to alternatives such as directional couplers, adiabatic X- or Y-junctions, and diffractive star couplers. >

2,477 citations