scispace - formally typeset
Search or ask a question
Author

Mofid Gorji-Bandpy

Other affiliations: University of Mazandaran
Bio: Mofid Gorji-Bandpy is an academic researcher from Babol Noshirvani University of Technology. The author has contributed to research in topics: Nusselt number & Heat transfer. The author has an hindex of 41, co-authored 124 publications receiving 5842 citations. Previous affiliations of Mofid Gorji-Bandpy include University of Mazandaran.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an extensive literature review of various turbulators (coiled tubes, extended surfaces (fin, louvered strip, winglet), rough surfaces (Corrugated tube, Rib) and swirl flow devices such as twisted tape, conical ring, snail entry turbulator, vortex rings, coiled wire) for enhancing heat transfer in heat exchangers.
Abstract: Economic reasons (material and energy saving) leads to make efforts for making more efficient heat exchange. The heat transfer enhancement techniques are widely used in many applications in the heating process to make possible reduction in weight and size or enhance the performance of heat exchangers. These techniques are classified as active and passive techniques. The active technique required external power while the passive technique does not need any external power. The passive techniques are valuable compared with the active techniques because the swirl inserts manufacturing process is simple and can be easily employed in an existing heat exchanger. Insertion of swirl flow devices enhance the convective heat transfer by making swirl into the bulk flow and disrupting the boundary layer at the tube surface due to repeated changes in the surface geometry. An effort has been made in this paper to carry out an extensive literature review of various turbulators (coiled tubes, extended surfaces (fin, louvered strip, winglet), rough surfaces (Corrugated tube, Rib) and swirl flow devices such as twisted tape, conical ring, snail entry turbulator, vortex rings, coiled wire) for enhancing heat transfer in heat exchangers. It can be concluded that wire coil gives better overall performance if the pressure drop penalty is considered. The use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube.

344 citations

Journal ArticleDOI
01 Oct 2013-Energy
TL;DR: In this paper, free convection heat transfer in a concentric annulus between a cold square and heated elliptic cylinders in the presence of magnetic field is investigated, and the Lattice Boltzmann method is applied to solve the governing equations.
Abstract: In this study, free convection heat transfer in a concentric annulus between a cold square and heated elliptic cylinders in presence of magnetic field is investigated. The square and elliptic cylinders are maintained at uniform temperatures and it is assumed that the walls are insulating magnetic field. Lattice Boltzmann method is applied to solve the governing equations. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo–Kleinstreuer–Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity is considered. The numerical investigation is carried out for different governing parameters namely; the Hartmann number, Rayleigh number and nanoparticle volume fraction. Also a correlation of Nusselt number corresponding to active parameters is presented. The results reveal that average Nusselt number is an increasing function of nanoparticle volume fraction and Rayleigh number, while it is a decreasing function of Hartmann number. Moreover it can be found that the enhancement in heat transfer increases as Hartmann number increases but it decreases with increase of Rayleigh number.

284 citations

Journal ArticleDOI
TL;DR: In this paper, the lattice Boltzmann method is used to investigate magnetohydrodynamic flow utilizing Cu-water nanofluid in a concentric annulus, and numerical results for flow and heat transfer characteristics are obtained for various values of Hartmann number ( Ha ǫ = 0 to 40), nanoparticle volume fraction ( ϕ Â = 0, 0.02, 0., 0.04 and 0.06), Rayleigh number ( Ra Â= 10 4,10 5 and 10 6 ), and aspect ratio ( λ Â
Abstract: Lattice Boltzmann method is used to investigate magnetohydrodynamic flow utilizing Cu–water nanofluid in a concentric annulus. This investigation was compared with other numerical methods and found to be in excellent agreement. Numerical results for flow and heat transfer characteristics are obtained for various values of Hartmann number ( Ha = 0 to 40), nanoparticle volume fraction ( ϕ = 0, 0.02, 0.04 and 0.06), Rayleigh number ( Ra = 10 4 ,10 5 and 10 6 ) and aspect ratio ( λ = 1.5 to 4.5). Results proved that enhancement ratio increases with decrease of Rayleigh number and it increases with augment of Hartmann number. Also it can be concluded that Nusselt number has a direct relationship with nanoparticle volume fraction, Rayleigh number and it has a reverse relationship with Hartmann number.

248 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of a magnetic field on natural convection in a half-annulus enclosure with one wall under constant heat flux using control volume based finite element method was investigated.
Abstract: In this paper, the effect of a magnetic field on natural convection in a half-annulus enclosure with one wall under constant heat flux using control volume based finite element method. The fluid in the enclosure is a water-based nanofluid containing Cu nanoparticles. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. Numerical simulations were performed for different governing parameters namely the Hartmann number, Rayleigh number and inclination angle of enclosure. The results indicate that Hartmann number and the inclination angle of the enclosure can be control parameters at different Rayleigh number. In presence of magnetic field velocity field retarded and hence convection and Nusselt number decreases.

223 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the control volume based finite element method (CVFEM) to simulate the fluid flow and heat transfer of Cu-water nanofluid in the presence of a horizontal magnetic field.
Abstract: In this study natural convection heat transfer of Cu–water nanofluid in a cold outer circular enclosure containing a hot inner sinusoidal circular cylinder in the presence of horizontal magnetic field is investigated numerically using the Control Volume based Finite Element Method (CVFEM). Both circular enclosure and inner cylinder are maintained at constant temperature. The governing equations of fluid motion and heat transfer in their vorticity stream function form are used to simulate the fluid flow and heat transfer. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell–Garnetts (MG) and Brinkman models, respectively. The calculations were performed for different governing parameters such as the Hartmann number, Rayleigh number, values of the number of undulations of the inner cylinder and nanoparticle volume fraction. The results indicate that in the absence of magnetic field, enhancement ratio decreases as Rayleigh number increases while an opposite trend is observed in the presence of magnetic field. Also it is found that the average Nusselt number is an increasing function of nanoparticle volume fraction, the number of undulations and Rayleigh numbers while it is a decreasing function of Hartmann number.

216 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: In this paper, the development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed.
Abstract: Fujishima and Honda (1972) demonstrated the potential of titanium dioxide (TiO2) semiconductor materials to split water into hydrogen and oxygen in a photo-electrochemical cell. Their work triggered the development of semiconductor photocatalysis for a wide range of environmental and energy applications. One of the most significant scientific and commercial advances to date has been the development of visible light active (VLA) TiO2 photocatalytic materials. In this review, a background on TiO2 structure, properties and electronic properties in photocatalysis is presented. The development of different strategies to modify TiO2 for the utilization of visible light, including non metal and/or metal doping, dye sensitization and coupling semiconductors are discussed. Emphasis is given to the origin of visible light absorption and the reactive oxygen species generated, deduced by physicochemical and photoelectrochemical methods. Various applications of VLA TiO2, in terms of environmental remediation and in particular water treatment, disinfection and air purification, are illustrated. Comprehensive studies on the photocatalytic degradation of contaminants of emerging concern, including endocrine disrupting compounds, pharmaceuticals, pesticides, cyanotoxins and volatile organic compounds, with VLA TiO2 are discussed and compared to conventional UV-activated TiO2 nanomaterials. Recent advances in bacterial disinfection using VLA TiO2 are also reviewed. Issues concerning test protocols for real visible light activity and photocatalytic efficiencies with different light sources have been highlighted.

3,305 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.
Abstract: Utilizing nanofluids as an advanced kind of liquid mixture with a small concentration of nanometer-sized solid particles in suspension is a relatively new field, which is less than two decades old. The aim of this review paper is the investigation of the nanofluids’ applications in solar thermal engineering systems. The shortage of fossil fuels and environmental considerations motivated the researchers to use alternative energy sources such as solar energy. Therefore, it is essential to enhance the efficiency and performance of the solar thermal systems. Nearly all of the former works conducted on the applications of nanofluids in solar energy is regarding their applications in collectors and solar water heaters. Therefore, a major part of this review paper allocated to the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints. In addition, some reported works on the applications of nanofluids in thermal energy storage, solar cells, and solar stills are reviewed. Subsequently, some suggestions are made to use the nanofluids in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on. Finally, the challenges of using nanofluids in solar energy devices are discussed.

1,069 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied and the significant effects of Brownian motion and thermophoresis have been included in the model of Nanofluide.
Abstract: In this study, effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied. The significant effects of Brownian motion and thermophoresis have been included in the model of nanofluid. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer are reduced to a set of ordinary differential equations. These equations, subjected to the associated boundary conditions are solved numerically using the fourth-order Runge–Kutta method. The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number, thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. Results show that Nusselt number has direct relationship with radiation parameter and Reynolds number while it has reverse relationship with other active parameters. It can also be found that concentration boundary layer thickness decreases with the increase of radiation parameter.

700 citations

Book ChapterDOI
28 Jan 2005
TL;DR: The Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K), thermal diffusivity: α, ≡ k/(ρ · Cp) (m /s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K).
Abstract: Geometry: shape, size, aspect ratio and orientation Flow Type: forced, natural, laminar, turbulent, internal, external Boundary: isothermal (Tw = constant) or isoflux (q̇w = constant) Fluid Type: viscous oil, water, gases or liquid metals Properties: all properties determined at film temperature Tf = (Tw + T∞)/2 Note: ρ and ν ∝ 1/Patm ⇒ see Q12-40 density: ρ ((kg/m) specific heat: Cp (J/kg ·K) dynamic viscosity: μ, (N · s/m) kinematic viscosity: ν ≡ μ/ρ (m/s) thermal conductivity: k, (W/m ·K) thermal diffusivity: α, ≡ k/(ρ · Cp) (m/s) Prandtl number: Pr, ≡ ν/α (−−) volumetric compressibility: β, (1/K)

636 citations