scispace - formally typeset
Search or ask a question
Author

Mohamed Athmane Yallese

Bio: Mohamed Athmane Yallese is an academic researcher from Université de Guelma. The author has contributed to research in topics: Surface roughness & Machining. The author has an hindex of 26, co-authored 77 publications receiving 2423 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) is analyzed and modeled.
Abstract: The present work concerns an experimental study of hard turning with CBN tool of AISI 52100 bearing steel, hardened at 64 HRC. The main objectives are firstly focused on delimiting the hard turning domain and investigating tool wear and forces behaviour evolution versus variations of workpiece hardness and cutting speed. Secondly, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) are analysed and modeled. The combined effects of the cutting parameters on machining output variables are investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of machining parameters with respect to objectives (surface roughness and cutting force values). Results show how much surface roughness is mainly influenced by feed rate and cutting speed. Also, it is underlined that the thrust force is the highest of cutting force components, and it is highly sensitive to workpiece hardness, negative rake angle and tool wear evolution. Finally, the depth of cut exhibits maximum influence on cutting forces as compared to the feed rate and cutting speed.

336 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of cutting speed, feed rate, workpiece hardness and depth of cut on surface roughness and cutting force components in the hard turning were experimentally investigated.

287 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a CBN tool during hard turning of 100Cr6-tempered steel was investigated using a series of long-duration wear tests to elucidate the cutting speed effects on the various tool wear forms.

202 citations

Journal ArticleDOI
TL;DR: In this article, a surface roughness model was proposed for hard turning by exploiting the response surface methodology (RSM) and the main input parameters of this model are the cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration in radial and in main cutting force directions.

188 citations

Journal ArticleDOI
TL;DR: In this paper, a comparison between the surface roughness criteria (Ra, Rz and Rt) of the wiper inserts with conventional inserts during hard turning of AISI 4140 hardened steel (60 HRC).

113 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) is analyzed and modeled.
Abstract: The present work concerns an experimental study of hard turning with CBN tool of AISI 52100 bearing steel, hardened at 64 HRC. The main objectives are firstly focused on delimiting the hard turning domain and investigating tool wear and forces behaviour evolution versus variations of workpiece hardness and cutting speed. Secondly, the relationship between cutting parameters (cutting speed, feed rate and depth of cut) and machining output variables (surface roughness, cutting forces) through the response surface methodology (RSM) are analysed and modeled. The combined effects of the cutting parameters on machining output variables are investigated while employing the analysis of variance (ANOVA). The quadratic model of RSM associated with response optimization technique and composite desirability was used to find optimum values of machining parameters with respect to objectives (surface roughness and cutting force values). Results show how much surface roughness is mainly influenced by feed rate and cutting speed. Also, it is underlined that the thrust force is the highest of cutting force components, and it is highly sensitive to workpiece hardness, negative rake angle and tool wear evolution. Finally, the depth of cut exhibits maximum influence on cutting forces as compared to the feed rate and cutting speed.

336 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effectiveness of cryogenic coolant during turning of Ti-6Al-4V at a constant speed and material removal rate (125 m/min, 48.5 cm 3 /min) with different combinations of feed rate and depth of cut.
Abstract: The use of cryogenic coolant in metal cutting has received renewed recent attention because liquid nitrogen is a safe, clean, non-toxic coolant that requires no expensive disposal and can substantially improve tool life. This work investigates the effectiveness of cryogenic coolant during turning of Ti-6Al-4V at a constant speed and material removal rate (125 m/min, 48.5 cm 3 /min) with different combinations of feed rate and depth of cut. It is found that the greatest improvement in tool life using cryogenic coolant occurs for conditions of high feed rate and low depth of cut combinations. However, this combination of machining parameters produces much shorter tool life compared to low feed rate and high depth of cut combinations. It is found that preventing heat generation during cutting is far more advantageous towards extending tool life rather than attempting to remove the heat with cryogenic coolant. Although cryogenic coolant is effective in extracting heat from the cutting zone, it is proposed that cryogenic coolant may limit the frictional heat generated during cutting and limit heat transfer to the tool by reducing the tool–chip contact length. The effect of cryogenic coolant on cutting forces and chip morphology is also examined.

315 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of cutting speed, feed rate, workpiece hardness and depth of cut on surface roughness and cutting force components in the hard turning were experimentally investigated.

287 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an effort to review some of these works and to understand the key issues related to process performance, including the type of tool material, cutting edge geometry and cutting parameters.
Abstract: Hard turning is gaining grounds for machining hardened steels as it has several benefits over grinding. There are several issues, which should be understood and dealt with, to achieve successful performance of the process. Researchers have worked upon several aspects related to hard turning. The present work is an effort to review some of these works and to understand the key issues related to process performance. The review shows that the type of tool material, cutting edge geometry and cutting parameters affect the process efficiencies in terms of tool forces, surface integrities integrity, and white layer. Adequate machine rigidity is a must essential to minimize the process inaccuracies. Also moreover, for finish hard turning, where the depth of cut is less than the nose radius of the tool, the forces deviate from the conventional trends as the radial force component is the maximum and axial force component becomes minimum. The present work finally lists down certain areas that can be taken up for further research in hard turning.

234 citations