scispace - formally typeset
Search or ask a question
Author

Mohamed Gad-el-Hak

Bio: Mohamed Gad-el-Hak is an academic researcher from Virginia Commonwealth University. The author has contributed to research in topics: Boundary layer & Turbulence. The author has an hindex of 51, co-authored 212 publications receiving 10892 citations. Previous affiliations of Mohamed Gad-el-Hak include Johns Hopkins University & University of Virginia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the status of the understanding of fluid flow phenomena particular to microdevices and emphasize the use of MEMS as sensors and actuators for flow diagnosis and control.
Abstract: Manufacturing processes that can create extremely small machines have been developed in recent years. Microelectromechanical systems (MEMS) refer to devices that have characteristic length of less than 1 mm but more than 1 micron, that combine electrical and mechanical components and that are fabricated using integrated circuit batch-processing techniques. Electrostatic, magnetic, pneumatic and thermal actuators, motors, valves, gears, and tweezers of less than 100-μm size have been fabricated. These have been used as sensors for pressure, temperature, mass flow, velocity and sound, as actuators for linear and angular motion and as simple components for complex systems such as micro-heat-engines and micro-heat-pumps The technology is progressing at a rate that fa r exceeds that of our understanding of the unconventional physics involved in the operation as well as the manufacturing of those minute devices. The primary objective of this article is to critically review the status of our understanding of fluid flow phenomena particular to microdevices. In terms of applications, the paper emphasizes the use of MEMS as sensors and actuators for flow diagnosis and control.

1,197 citations

BookDOI
27 Sep 2001
TL;DR: In this paper, the authors present a detailed overview of the history of the field of flow simulation for MEMS and discuss the current state-of-the-art in this field.
Abstract: Part I: Background and Fundamentals Introduction, Mohamed Gad-el-Hak, University of Notre Dame Scaling of Micromechanical Devices, William Trimmer, Standard MEMS, Inc., and Robert H. Stroud, Aerospace Corporation Mechanical Properties of MEMS Materials, William N. Sharpe, Jr., Johns Hopkins University Flow Physics, Mohamed Gad-el-Hak, University of Notre Dame Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains, Robert M. Kirby and George Em Karniadakis, Brown University, and Oleg Mikulchenko and Kartikeya Mayaram, Oregon State University Liquid Flows in Microchannels, Kendra V. Sharp and Ronald J. Adrian, University of Illinois at Urbana-Champaign, Juan G. Santiago and Joshua I. Molho, Stanford University Burnett Simulations of Flows in Microdevices, Ramesh K. Agarwal and Keon-Young Yun, Wichita State University Molecular-Based Microfluidic Simulation Models, Ali Beskok, Texas A&M University Lubrication in MEMS, Kenneth S. Breuer, Brown University Physics of Thin Liquid Films, Alexander Oron, Technion, Israel Bubble/Drop Transport in Microchannels, Hsueh-Chia Chang, University of Notre Dame Fundamentals of Control Theory, Bill Goodwine, University of Notre Dame Model-Based Flow Control for Distributed Architectures, Thomas R. Bewley, University of California, San Diego Soft Computing in Control, Mihir Sen and Bill Goodwine, University of Notre Dame Part II: Design and Fabrication Materials for Microelectromechanical Systems Christian A. Zorman and Mehran Mehregany, Case Western Reserve University MEMS Fabrication, Marc J. Madou, Nanogen, Inc. LIGA and Other Replication Techniques, Marc J. Madou, Nanogen, Inc. X-Ray-Based Fabrication, Todd Christenson, Sandia National Laboratories Electrochemical Fabrication (EFAB), Adam L. Cohen, MEMGen Corporation Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS, Robert S. Okojie, NASA Glenn Research Center Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide, Glenn M. Beheim, NASA Glenn Research Center Microfabricated Chemical Sensors for Aerospace Applications, Gary W. Hunter, NASA Glenn Research Center, Chung-Chiun Liu, Case Western Reserve University, and Darby B. Makel, Makel Engineering, Inc. Packaging of Harsh-Environment MEMS Devices, Liang-Yu Chen and Jih-Fen Lei, NASA Glenn Research Center Part III: Applications of MEMS Inertial Sensors, Paul L. Bergstrom, Michigan Technological University, and Gary G. Li, OMM, Inc. Micromachined Pressure Sensors, Jae-Sung Park, Chester Wilson, and Yogesh B. Gianchandani, University of Wisconsin-Madison Sensors and Actuators for Turbulent Flows. Lennart Loefdahl, Chalmers University of Technology, and Mohamed Gad-el-Hak, University of Notre Dame Surface-Micromachined Mechanisms, Andrew D. Oliver and David W. Plummer, Sandia National Laboratories Microrobotics Thorbjoern Ebefors and Goeran Stemme, Royal Institute of Technology, Sweden Microscale Vacuum Pumps, E. Phillip Muntz, University of Southern California, and Stephen E. Vargo, SiWave, Inc. Microdroplet Generators. Fan-Gang Tseng, National Tsing Hua University, Taiwan Micro Heat Pipes and Micro Heat Spreaders, G. P. "Bud" Peterson, Rensselaer Polytechnic Institute Microchannel Heat Sinks, Yitshak Zohar, Hong Kong University of Science and Technology Flow Control, Mohamed Gad-el-Hak, University of Notre Dame) Part IV: The Future Reactive Control for Skin-Friction Reduction, Haecheon Choi, Seoul National University Towards MEMS Autonomous Control of Free-Shear Flows, Ahmed Naguib, Michigan State University Fabrication Technologies for Nanoelectromechanical Systems, Gary H. Bernstein, Holly V. Goodson, and Gregory L. Snider, University of Notre Dame Index

951 citations

Book
01 Aug 2000
TL;DR: The present work focuses on the development of coherent structures for flow control in microelectromechanical systems, which combine Reynolds number effects with self-consistency to form coherent structures.
Abstract: Preface Nomenclature 1. Introduction 2. Governing equations 3. Unifying principles 4. Coherent structures 5. Reynolds number effects 6. Transition control 7. Compliant coatings 8. Separation control 9. Low-Reynolds-number aerodynamics 10. Drag reduction 11. Mixing enhancement 12. Noise reduction 13. Microelectromechanical systems 14. Frontiers of flow control Epilogue Bibliography Index.

926 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a simulation of the transition and free-molecular regime of pressure-driven liquid flow in a shear-driven and separated liquid flow model.
Abstract: Basic Concepts and Technologies * Governing Equations and Slip Models * Shear-Driven and Separated Micro Flows * Pressure-Driven Micro Flows: Slip Flow Regime * Pressure-Driven Flows: Transition and Free- Molecular Regimes * Thermal Effects in Micro Scales * Prototype Applications of Gas Micro Flows * Electrokinetically-Driven Liquid Micro Flows * Numerical Methods for Continuous Simulation * Numerical Methods for Atomistic Simulation

612 citations

Journal ArticleDOI
TL;DR: The status and outlook of separation control for both steady and unsteady flows are reviewed and both passive and active techniques to prevent or to provoke flow detachment are considered.
Abstract: Under certain conditions, wall-bounded flows separate. To improve the performance of natural or man-made flow systems, it may be beneficial to delay or advance this detachment process. The present article reviews the status and outlook of separation control for both steady and unsteady flows. Both passive and active techniques to prevent or to provoke flow detachment are considered and suggestions are made for further research.

383 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Book ChapterDOI
31 Jan 1963

2,885 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey progress over the past 25 years in the development of microscale devices for pumping fluids and attempt to provide both a reference for micropump researchers and a resource for those outside the field who wish to identify the best micropumps for a particular application.
Abstract: We survey progress over the past 25 years in the development of microscale devices for pumping fluids. We attempt to provide both a reference for micropump researchers and a resource for those outside the field who wish to identify the best micropump for a particular application. Reciprocating displacement micropumps have been the subject of extensive research in both academia and the private sector and have been produced with a wide range of actuators, valve configurations and materials. Aperiodic displacement micropumps based on mechanisms such as localized phase change have been shown to be suitable for specialized applications. Electroosmotic micropumps exhibit favorable scaling and are promising for a variety of applications requiring high flow rates and pressures. Dynamic micropumps based on electrohydrodynamic and magnetohydrodynamic effects have also been developed. Much progress has been made, but with micropumps suitable for important applications still not available, this remains a fertile area for future research.

1,913 citations