scispace - formally typeset
Search or ask a question
Author

Mohamed Haboussi

Bio: Mohamed Haboussi is an academic researcher from University of Paris. The author has contributed to research in topics: Finite element method & Materials science. The author has an hindex of 12, co-authored 44 publications receiving 499 citations. Previous affiliations of Mohamed Haboussi include École normale supérieure de Cachan & University of Lorraine.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the bending and free flexural vibration behavior of sandwich plates with carbon nanotube (CNT) reinforced facesheets are investigated using QUAD-8 shear flexible element developed based on higher-order structural theory.

143 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlocal phenomenological behavior model is proposed in order to describe the localization and propagation of stress-induced martensite transformation in shape memory alloy (SMA) wires and thin films.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the flutter characteristics of sandwich panels with carbon nanotube (CNT) reinforced face sheets are investigated using QUAD-8 shear flexible element developed based on higher-order structural theory.

42 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of localization and propagation of martensitic phase transformation on the response of SMA thin structures subjected to thermo-mechanical loadings are investigated using nonlocal constitutive model in conjunction with finite element method.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the free vibration characteristics of curvilinear fiber composite laminates exposed to hygrothermal environment were studied and a 4-noded shear flexible quadrilateral plate element based on extended finite element approach was employed for the spatial discretization.
Abstract: In this paper, we study the free vibration characteristics of curvilinear fibre composite laminates exposed to hygrothermal environment. The formulation is based on the transverse shear deformation theory and it accounts for the lamina material properties at elevated moisture concentrations and thermal gradients. A 4-noded shear flexible quadrilateral plate element based on extended finite element approach is employed for the spatial discretization. The effect of a centrally located cut-out, modelled within the framework of the extended finite element method, is also studied. A detailed parametric investigation by varying the curvilinear fibre angles at the centre and at the edge of the laminate, the plate geometry, the geometry of the cut-out, the moisture concentration, the thermal gradient and the boundary conditions on the vibration characteristics is numerically studied and it is hoped that this detailed study will help the designers in optimizing such structures under dynamic situation.

34 citations


Cited by
More filters
Journal ArticleDOI
12 Oct 2019-Polymers
TL;DR: An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications.
Abstract: Composites have been found to be the most promising and discerning material available in this century. Presently, composites reinforced with fibers of synthetic or natural materials are gaining more importance as demands for lightweight materials with high strength for specific applications are growing in the market. Fiber-reinforced polymer composite offers not only high strength to weight ratio, but also reveals exceptional properties such as high durability; stiffness; damping property; flexural strength; and resistance to corrosion, wear, impact, and fire. These wide ranges of diverse features have led composite materials to find applications in mechanical, construction, aerospace, automobile, biomedical, marine, and many other manufacturing industries. Performance of composite materials predominantly depends on their constituent elements and manufacturing techniques, therefore, functional properties of various fibers available worldwide, their classifications, and the manufacturing techniques used to fabricate the composite materials need to be studied in order to figure out the optimized characteristic of the material for the desired application. An overview of a diverse range of fibers, their properties, functionality, classification, and various fiber composite manufacturing techniques is presented to discover the optimized fiber-reinforced composite material for significant applications. Their exceptional performance in the numerous fields of applications have made fiber-reinforced composite materials a promising alternative over solitary metals or alloys.

619 citations

Journal ArticleDOI
TL;DR: A review of carbon nanotube reinforced composite (CNTRC) materials can be found in this article, where the concept of functionally graded (FG) pattern of reinforcement has been applied for functionally graded carbon nanite reinforced composite materials.

541 citations

Journal ArticleDOI
TL;DR: A review of modern trends in theoretical developments, novel designs and modern applications of sandwich structures can be found in this paper, where the most recent literature published at the time of writing this review is considered, older sources are listed only on as-needed basis.
Abstract: The review outlines modern trends in theoretical developments, novel designs and modern applications of sandwich structures. The most recent work published at the time of writing of this review is considered, older sources are listed only on as-needed basis. The review begins with the discussion on the analytical models and methods of analysis of sandwich structures as well as representative problems utilizing or comparing these models. Novel designs of sandwich structures is further elucidated concentrating on miscellaneous cores, introduction of nanotubes and smart materials in the elements of a sandwich structure as well as using functionally graded designs. Examples of problems experienced by developers and designers of sandwich structures, including typical damage, response under miscellaneous loads, environmental effects and fire are considered. Sample applications of sandwich structures included in the review concentrate on aerospace, civil and marine engineering, electronics and biomedical areas. Finally, the authors suggest a list of areas where they envision a pressing need in further research.

412 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art in the area of dynamic analysis of composite shells can be found in this article, where the main aim is to provide a broad perspective of the current state of the art in this field.

364 citations

Journal ArticleDOI
TL;DR: An overview of composite materials, their characterization, classification and main advantages linked to physical and mechanical properties based on the recent studies are presented in this article, where the conventional manufacturing techniques of composite and their applications are presented.
Abstract: Emerged in the middle of 20th century, composite materials are now one of the hotspot research topics in the modern technology. Their promising characteristics make them suitable for enormous applications in industrial field such as aerospace, automotive, construction, sports, bio-medical and many others. These materials reveal remarkable structural and mechanical properties such as high strength to weight ratio, resistance to chemicals, fire, corrosion and wear; being economical to manufacture. Herein, an overview of composite materials, their characterization, classification and main advantages linked to physical and mechanical properties based on the recent studies are presented. There, were presented the conventional manufacturing techniques of composite and their applications. It was highlighted the tremendous need to discovery new generation of composites that should incorporate the synthetic or natural materials by implementing new efficient manufacturing processes. In the combination of matrix and reinforcement materials, the use of natural materials as constituent are compulsory in order to obtain a complete material degradable as environmentally friendly.

349 citations