scispace - formally typeset
Search or ask a question
Author

Mohamed Ibrahim

Other affiliations: New York University Abu Dhabi, Intel
Bio: Mohamed Ibrahim is an academic researcher from Duke University. The author has contributed to research in topics: Biochip & Routing (electronic design automation). The author has an hindex of 16, co-authored 70 publications receiving 716 citations. Previous affiliations of Mohamed Ibrahim include New York University Abu Dhabi & Intel.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Although IoT eHealth has vastly expanded the possibilities to fulfill a number of existing healthcare needs, many challenges must still be addressed in order to develop consistent, suitable, safe, flexible, and power-efficient systems that are suitable fit for medical needs.
Abstract: The interaction between technology and healthcare has a long history. However, recent years have witnessed the rapid growth and adoption of the Internet of Things (IoT) paradigm, the advent of miniature wearable biosensors, and research advances in big data techniques for effective manipulation of large, multiscale, multimodal, distributed, and heterogeneous data sets. These advances have generated new opportunities for personalized precision eHealth and mHealth services. IoT heralds a paradigm shift in the healthcare horizon by providing many advantages, including availability and accessibility, ability to personalize and tailor content, and cost-effective delivery. Although IoT eHealth has vastly expanded the possibilities to fulfill a number of existing healthcare needs, many challenges must still be addressed in order to develop consistent, suitable, safe, flexible, and power-efficient systems that are suitable fit for medical needs. To enable this transformation, it is necessary for a large number of significant technological advancements in the hardware and software communities to come together. This keynote paper addresses all these important aspects of novel IoT technologies for smart healthcare-wearable sensors, body area sensors, advanced pervasive healthcare systems, and big data analytics. It identifies new perspectives and highlights compelling research issues and challenges, such as scalability, interoperability, device-network-human interfaces, and security, with various case studies. In addition, with the help of examples, we show how knowledge from CAD areas, such as large scale analysis and optimization techniques can be applied to the important problems of eHealth.

91 citations

Journal ArticleDOI
TL;DR: This paper identifies result-manipulation attacks on a DMFB that maliciously alter the assay outcomes and identifies denial-of-service attacks, where the attacker can disrupt the assay operation by tampering either with the droplet-routing algorithm or with the actuation sequence.
Abstract: A digital microfluidic biochip (DMFB) is an emerging technology that enables miniaturized analysis systems for point-of-care clinical diagnostics, DNA sequencing, and environmental monitoring. A DMFB reduces the rate of sample and reagent consumption, and automates the analysis of assays. In this paper, we provide the first assessment of the security vulnerabilities of DMFBs. We identify result-manipulation attacks on a DMFB that maliciously alter the assay outcomes. Two practical result-manipulation attacks are shown on a DMFB platform performing enzymatic glucose assay on serum. In the first attack, the attacker adjusts the concentration of the glucose sample and thereby modifies the final result. In the second attack, the attacker tampers with the calibration curve of the assay operation. We then identify denial-of-service attacks, where the attacker can disrupt the assay operation by tampering either with the droplet-routing algorithm or with the actuation sequence. We demonstrate these attacks using a digital microfluidic synthesis simulator. The results show that the attacks are easy to implement and hard to detect. Therefore, this work highlights the need for effective protections against malicious modifications in DMFBs.

51 citations

Journal ArticleDOI
TL;DR: This paper defines security metrics and present techniques for improving performance through static checkpoint maps, and describes performance tradeoffs associated with static and random checkpoints.
Abstract: Digital microfluidic biochips (DMFBs) integrated with processors and arrays of sensors form cyberphysical systems and consequently face a variety of unique, recently described security threats. It has been noted that techniques used for error recovery can provide some assurance of integrity when a cyberphysical DMFB is under attack. This paper proposes the use of such hardware for security purposes through the randomization of checkpoints in both space and time, and provides design guidelines for designers of such systems. We define security metrics and present techniques for improving performance through static checkpoint maps, and describe performance tradeoffs associated with static and random checkpoints. We also provide detailed classification of attack models and demonstrate the feasibility of our techniques with case studies on assays implemented in typical DMFB hardware.

44 citations

Journal ArticleDOI
TL;DR: Simulation results show that the adaptive framework efficiently utilizes on-chip resources to reduce time-to-result without sacrificing the chip’s lifetime, the first design-automation framework for quantitative gene expression.
Abstract: Considerable effort has recently been directed toward the implementation of molecular bioassays on digital-microfluidic biochips (DMFBs). However, today’s solutions suffer from the drawback that multiple sample pathways are not supported and on-chip reconfigurable devices are not efficiently exploited. As a result, impractical manual intervention is needed to process protocols for gene-expression analysis. To overcome this problem, we first describe our benchtop experimental studies to understand gene-expression analysis and its relationship to the biochip design specification. We then introduce an integrated framework for quantitative gene-expression analysis using DMFBs. The proposed framework includes: 1) a spatial-reconfiguration technique that incorporates resource-sharing specifications into the synthesis flow; 2) an interactive firmware that collects and analyzes sensor data based on quantitative polymerase chain reaction; and 3) a real-time resource-allocation scheme that responds promptly to decisions about the protocol flow received from the firmware layer. This framework is combined with cyberphysical integration to develop the first design-automation framework for quantitative gene expression. Simulation results show that our adaptive framework efficiently utilizes on-chip resources to reduce time-to-result without sacrificing the chip’s lifetime.

44 citations

Journal ArticleDOI
TL;DR: Digital microfluidic biochips implement novel protocols for highly sensitive and specific biomolecular recognition, however, attackers can exploit supply-chain vulnerabilities to pirate DMFBs' proprietary protocols or modify their results, with serious consequences for laboratory analysis, healthcare, and biotechnology innovation.
Abstract: Digital microfluidic biochips (DMFBs) implement novel protocols for highly sensitive and specific biomolecular recognition. However, attackers can exploit supply-chain vulnerabilities to pirate DMFBs' proprietary protocols or modify their results, with serious consequences for laboratory analysis, healthcare, and biotechnology innovation.

43 citations


Cited by
More filters
Journal Article
TL;DR: Reading molecular biology of the gene is also a way as one of the collective books that gives many advantages, not only for you, but for the other peoples with those meaningful benefits.
Abstract: No wonder you activities are, reading will be always needed. It is not only to fulfil the duties that you need to finish in deadline time. Reading will encourage your mind and thoughts. Of course, reading will greatly develop your experiences about everything. Reading molecular biology of the gene is also a way as one of the collective books that gives many advantages. The advantages are not only for you, but for the other peoples with those meaningful benefits.

718 citations

Journal ArticleDOI
TL;DR: The Internet of Nano Things and Tactile Internet are driving the innovation in the H-IoT applications and the future course for improving the Quality of Service (QoS) using these new technologies are identified.
Abstract: The impact of the Internet of Things (IoT) on the advancement of the healthcare industry is immense. The ushering of the Medicine 4.0 has resulted in an increased effort to develop platforms, both at the hardware level as well as the underlying software level. This vision has led to the development of Healthcare IoT (H-IoT) systems. The basic enabling technologies include the communication systems between the sensing nodes and the processors; and the processing algorithms for generating an output from the data collected by the sensors. However, at present, these enabling technologies are also supported by several new technologies. The use of Artificial Intelligence (AI) has transformed the H-IoT systems at almost every level. The fog/edge paradigm is bringing the computing power close to the deployed network and hence mitigating many challenges in the process. While the big data allows handling an enormous amount of data. Additionally, the Software Defined Networks (SDNs) bring flexibility to the system while the blockchains are finding the most novel use cases in H-IoT systems. The Internet of Nano Things (IoNT) and Tactile Internet (TI) are driving the innovation in the H-IoT applications. This paper delves into the ways these technologies are transforming the H-IoT systems and also identifies the future course for improving the Quality of Service (QoS) using these new technologies.

446 citations

01 Jan 2010
TL;DR: This paper proposes BlueChip, a defensive strategy that has both a design-time component and a runtime component that is able to prevent all hardware attacks the authors evaluate while incurring a small runtime overhead.
Abstract: The computer systems security arms race between attackers and defenders are largely taken place in the domain of software systems, but as hardware complexity and design processes have envolved, novel and potent hardware-based security threats are now possible. This article presents Unused Circuit Identification (UCI), an approach for detecting suspicious circuits during design time, and BlueChip, a hybrid hardware/software approach to detaching suspicious circuits and making up for UCI classifier errors during runtime.

220 citations

Journal ArticleDOI
TL;DR: This review critically review those biosensor and chemosensor technologies and concepts used in an IoT setting or considered IoT-ready that were published in the period 2013-2018, while also pointing to those foundational concepts and ideas that arose over the last two decades.
Abstract: The Internet of Things (IoT) is a megatrend that cuts across all scientific and engineering disciplines and establishes an integrating technical evolution to improve production efficiencies and daily human life. Linked machines and sensors use decision-making routines to work toward a common product or solution. Expanding this technical revolution into the value chain of complex areas such as agriculture, food production, and healthcare requires the implementation and connection of sophisticated (bio)analytical methods. Today, wearable sensors, monitors, and point-of-care diagnostic tests are part of our daily lives and improve patients' medical progression or athletes' monitoring capabilities that are already beyond imagination. Also, early contributions toward sensor networks and finally the IT revolution with wireless data collection and transmission via Bluetooth or smartphones have set the foundation to connect remote sensors and distributed analytical chemical services with centralized laboratories, cloud storage, and cloud computing. Here, we critically review those biosensor and chemosensor technologies and concepts used in an IoT setting or considered IoT-ready that were published in the period 2013-2018, while also pointing to those foundational concepts and ideas that arose over the last two decades. We focus on these sensors due to their unique ability to be remotely stationed and that easily function in networks and have made the greatest progress toward IoT integration. Finally, we highlight requirements and existing and future challenges and provide possible solutions important toward the vision of a seamless integration into a global analytical concept, which includes many more analytical techniques than sensors and includes foremost next-generation sequencing and separation principles coupled with MS detection.

166 citations