scispace - formally typeset
Search or ask a question
Author

Mohamed K. Diab

Other affiliations: JPMorgan Chase
Bio: Mohamed K. Diab is an academic researcher from Masimo. The author has contributed to research in topics: Signal & Signal processing. The author has an hindex of 25, co-authored 48 publications receiving 8439 citations. Previous affiliations of Mohamed K. Diab include JPMorgan Chase.

Papers
More filters
Patent
04 May 2004
TL;DR: In this article, a method and an apparatus to analyze two measured signals that are modeled as containing desired and undesired portions such as noise, FM and AM modulation are presented, and coefficients relate the two signals according to a model defined in accordance with the present invention.
Abstract: A method and an apparatus to analyze two measured signals that are modeled as containing desired and undesired portions such as noise, FM and AM modulation. Coefficients relate the two signals according to a model defined in accordance with the present invention. In one embodiment, a transformation is used to evaluate a ratio of the two measured signals in order to find appropriate coefficients. The measured signals are then fed into a signal scrubber which uses the coefficients to remove the unwanted portions. The signal scrubbing is performed in either the time domain or in the frequency domain. The method and apparatus are particularly advantageous to blood oximetry and pulserate measurements. In another embodiment, an estimate of the pulserate is obtained by applying a set of rules to a spectral transform of the scrubbed signal. In another embodiment, an estimate of the pulserate is obtained by transforming the scrubbed signal from a first spectral domain into a second spectral domain. The pulserate is found by identifying the largest spectral peak in the second spectral domain.

1,133 citations

Patent
30 Nov 1999
TL;DR: In this article, the authors present a method and apparatus for determining the operating wavelength of a light emitting element, such as a light emitting diode, within a given range by selecting their operating drive current.
Abstract: The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.

655 citations

Patent
27 May 1999
TL;DR: In this article, a multiple-site, multiple-parameter pulse oximeter was proposed to simultaneously measure arterial and venous oxygen saturation at any specific site and generate a corresponding plethysmograph waveform.
Abstract: An improved pulse oximeter provides for simultaneous, noninvasive oxygen status and photoplethysmograph measurements at both single and multiple sites. In particular, this multiple-site, multiple-parameter pulse oximeter, or “stereo pulse oximeter” simultaneously measures both arterial and venous oxygen saturation at any specific site and generates a corresponding plethysmograph waveform. A corresponding computation of arterial minus venous oxygen saturation is particularly advantageous for oxygen therapy management. An active pulse-inducing mechanism having a scattering-limited drive generates a consistent pulsatile venous signal utilized for the venous blood measurements. The stereo pulse oximeter also measures arterial oxygen saturation and plethysmograph shape parameters across multiple sites. A corresponding calculation of delta arterial saturation and comparison of plethysmograph shape parameters between multiple sites is particularly advantageous for the detection and management of persistent pulmonary hypertension in neonates (PPHN), a patent ductus arteriosis (PDA), and aortic coarctation.

585 citations

Patent
09 Apr 1999
TL;DR: In this article, a detector detects a first parametric signal responsive to the first input signal passing through a portion of the subject having blood therein and also detects a second parametric response to the second input signal.
Abstract: A method and an apparatus measure blood oxygenation in a subject. A first signal source applies a first input signal during a first time interval. A second signal source applies a second input signal during a second time interval. A detector detects a first parametric signal responsive to the first input signal passing through a portion of the subject having blood therein. The detector also detects a second parametric signal responsive to the second input signal passing through the portion of the subject. The detector generates a detector output signal responsive to the first and second parametric signals. A signal processor receives the detector output signal and demodulates the detector output signal by applying a first demodulation signal to a signal responsive to the detector output signal to generate a first output signal responsive to the first parametric signal. The signal processor applies a second demodulation signal to the signal responsive to the detector output signal to generate a second output signal responsive to the second parametric signal. The first demodulation signal and the second demodulation signal both include at least a first component having a first frequency and a first amplitude and a second component having a second frequency and a second amplitude. The second frequency is a harmonic of the first frequency. The second amplitude is related to the first amplitude to minimize crosstalk from the first parametric signal to the second output signal and to minimize crosstalk from the second parametric signal to the first output signal.

485 citations

Patent
04 Jun 1996
TL;DR: In this paper, a blood constituent monitoring method for inducing an active pulse in the blood volume of a patient was proposed, which results in a cyclic and periodic change in the flow of blood through a fleshy medium under test.
Abstract: A blood constituent monitoring method for inducing an active pulse in the blood volume of a patient. The induction of an active pulse results in a cyclic, and periodic change in the flow of blood through a fleshy medium under test. By actively inducing a change of the blood volume, modulation of the volume of blood can be obtained to provide a greater signal to noise ratio. This allows for the detection of constituents in blood at concentration levels below those previously detectable in a non-invasive system. Radiation which passes through the fleshy medium is detected by a detector which generates a signal indicative of the intensity of the detected radiation. Signal processing is performed on the electrical signal to isolate those optical characteristics of the electrical signal due to the optical characteristics of the blood.

473 citations


Cited by
More filters
Patent
30 Oct 2007
TL;DR: An analyte monitor includes a sensor, a sensor control unit, and a display unit as discussed by the authors, which is used to display an indication of a level of an analyte, based on the data obtained using the sensor.
Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.

1,856 citations

Patent
03 Apr 1997
TL;DR: In this paper, a method and apparatus for analyzing two measured signals that are modeled as containing primary and secondary portions is presented, where coefficients relate the two signals according to a model defined in accordance with the present invention.
Abstract: The present invention involves method and apparatus for analyzing two measured signals that are modeled as containing primary and secondary portions. Coefficients relate the two signals according to a model defined in accordance with the present invention. In one embodiment, the present invention involves utilizing a transformation which evaluates a plurality of possible signal coefficients in order to find appropriate coefficients. Alternatively, the present invention involves using statistical functions or Fourier transform and windowing techniques to determine the coefficients relating to two measured signals. Use of this invention is described in particular detail with respect to blood oximetry measurements.

1,228 citations

Patent
04 May 2004
TL;DR: In this article, a method and an apparatus to analyze two measured signals that are modeled as containing desired and undesired portions such as noise, FM and AM modulation are presented, and coefficients relate the two signals according to a model defined in accordance with the present invention.
Abstract: A method and an apparatus to analyze two measured signals that are modeled as containing desired and undesired portions such as noise, FM and AM modulation. Coefficients relate the two signals according to a model defined in accordance with the present invention. In one embodiment, a transformation is used to evaluate a ratio of the two measured signals in order to find appropriate coefficients. The measured signals are then fed into a signal scrubber which uses the coefficients to remove the unwanted portions. The signal scrubbing is performed in either the time domain or in the frequency domain. The method and apparatus are particularly advantageous to blood oximetry and pulserate measurements. In another embodiment, an estimate of the pulserate is obtained by applying a set of rules to a spectral transform of the scrubbed signal. In another embodiment, an estimate of the pulserate is obtained by transforming the scrubbed signal from a first spectral domain into a second spectral domain. The pulserate is found by identifying the largest spectral peak in the second spectral domain.

1,133 citations

Patent
26 Jan 2006
TL;DR: In this paper, the present paper relates to systems and methods for transcutaneous measurement of glucose in a host, and the present invention relates to the system and method for measuring an analyte in the host.
Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.

902 citations

Patent
31 Aug 2009
TL;DR: In this article, a small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described, which is designed to allow "one-point" in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood.
Abstract: A small diameter flexible electrode designed for subcutaneous in vivo amperometric monitoring of glucose is described. The electrode is designed to allow “one-point” in vivo calibration, i.e., to have zero output current at zero glucose concentration, even in the presence of other electroreactive species of serum or blood. The electrode is preferably three or four-layered, with the layers serially deposited within a recess upon the tip of a polyamide insulated gold wire. A first glucose concentration-to-current transducing layer is overcoated with an electrically insulating and glucose flux limiting layer (second layer) on which, optionally, an immobilized interference-eliminating horseradish peroxidase based film is deposited (third layer). An outer (fourth) layer is biocompatible.

844 citations