scispace - formally typeset
Search or ask a question
Author

Mohamed L. Seghier

Bio: Mohamed L. Seghier is an academic researcher from Emirates College for Advanced Education. The author has contributed to research in topics: Functional magnetic resonance imaging & Lateralization of brain function. The author has an hindex of 52, co-authored 109 publications receiving 9356 citations. Previous affiliations of Mohamed L. Seghier include French Institute of Health and Medical Research & Khalifa University.


Papers
More filters
Journal ArticleDOI
TL;DR: The AG emerges as a cross-modal hub where converging multisensory information is combined and integrated to comprehend and give sense to events, manipulate mental representations, solve familiar problems, and reorient attention to relevant information.
Abstract: There is considerable interest in the structural and functional properties of the angular gyrus (AG). Located in the posterior part of the inferior parietal lobule, the AG has been shown in numerous meta-analysis reviews to be consistently activated in a variety of tasks. This review discusses the involvement of the AG in semantic processing, word reading and comprehension, number processing, default mode network, memory retrieval, attention and spatial cognition, reasoning, and social cognition. This large functional neuroimaging literature depicts a major role for the AG in processing concepts rather than percepts when interfacing perception-to-recognition-to-action. More specifically, the AG emerges as a cross-modal hub where converging multisensory information is combined and integrated to comprehend and give sense to events, manipulate mental representations, solve familiar problems, and reorient attention to relevant information. In addition, this review discusses recent findings that point to the existence of multiple subdivisions in the AG. This spatial parcellation can serve as a framework for reporting AG activations with greater definition. This review also acknowledges that the role of the AG cannot comprehensibly be identified in isolation but needs to be understood in parallel with the influence from other regions. Several interesting questions that warrant further investigations are finally emphasized.

1,177 citations

Journal ArticleDOI
01 Nov 2003-Brain
TL;DR: Findings show that the integrity of the right OFA is necessary for normal face perception and suggest that the face-sensitive responses observed at this level in normal subjects may arise from feedback connections from the right FFA.
Abstract: Neuroimaging studies have identified at least two bilateral areas of the visual extrastriate cortex that respond more to pictures of faces than objects in normal human subjects in the middle fusiform gyrus [the 'fusiform face area' (FFA)] and, more posteriorly, in the inferior occipital cortex ['occipital face area' (OFA)], with a right hemisphere dominance. However, it is not yet clear how these regions interact which each other and whether they are all necessary for normal face perception. It has been proposed that the right hemisphere FFA acts as an isolated ('modular') processing system for faces or that this region receives its face-sensitive inputs from the OFA in a feedforward hierarchical model of face processing. To test these proposals, we report a detailed neuropsychological investigation combined with a neuroimaging study of a patient presenting a deficit restricted to face perception, consecutive to bilateral occipito-temporal lesions. Due to the asymmetry of the lesions, the left middle fusiform gyrus and the right inferior occipital cortex were damaged but the right middle fusiform gyrus was structurally intact. Using functional MRI, we disclosed a normal activation of the right FFA in response to faces in the patient despite the absence of any feedforward inputs from the right OFA, located in a damaged area of cortex. Together, these findings show that the integrity of the right OFA is necessary for normal face perception and suggest that the face-sensitive responses observed at this level in normal subjects may arise from feedback connections from the right FFA. In agreement with the current literature on the anatomical basis of prosopagnosia, it is suggested that the FFA and OFA in the right hemisphere and their re-entrant integration are necessary for normal face processing.

637 citations

Journal ArticleDOI
TL;DR: Two functional magnetic resonance imaging experiments showing enhanced responses in human middle superior temporal sulcus for angry relative to neutral prosody are reported, reflecting a fundamental principle of human brain organization shared by voice and face perception.
Abstract: We report two functional magnetic resonance imaging experiments showing enhanced responses in human middle superior temporal sulcus for angry relative to neutral prosody. This emotional enhancement was voice specific, unrelated to isolated acoustic amplitude or frequency cues in angry prosody, and distinct from any concomitant task-related attentional modulation. Attention and emotion seem to have separate effects on stimulus processing, reflecting a fundamental principle of human brain organization shared by voice and face perception.

427 citations

Journal ArticleDOI
TL;DR: In functional magnetic resonance imaging (fMRI), hemispheric dominance is generally indicated by a measure called the laterality index (LI) The assessment of a meaningful LI measure depends on several methodological factors that should be taken into account when interpreting LI values or comparing between subjects as discussed by the authors.

404 citations

Journal ArticleDOI
15 Oct 2009-Nature
TL;DR: Comparisons of structural brain scans from those who learnt to read as adults (late-literates) with those from a carefully matched set of illiterates demonstrate how the regions identified in late-literate interact during reading, relative to object naming, in early literates.
Abstract: Language is a uniquely human ability that evolved at some point in the roughly 6,000,000 years since human and chimpanzee lines diverged. Even in the most linguistically impoverished environments, children naturally develop sophisticated language systems. In contrast, reading is a learnt skill that does not develop without intensive tuition and practice. Learning to read is likely to involve ontogenic structural brain changes, but these are nearly impossible to isolate in children owing to concurrent biological, environmental and social maturational changes. In Colombia, guerrillas are re-integrating into mainstream society and learning to read for the first time as adults. This presents a unique opportunity to investigate how literacy changes the brain, without the maturational complications present in children. Here we compare structural brain scans from those who learnt to read as adults (late-literates) with those from a carefully matched set of illiterates. Late-literates had more white matter in the splenium of the corpus callosum and more grey matter in bilateral angular, dorsal occipital, middle temporal, left supramarginal and superior temporal gyri. The importance of these brain regions for skilled reading was investigated in early literates, who learnt to read as children. We found anatomical connections linking the left and right angular and dorsal occipital gyri through the area of the corpus callosum where white matter was higher in late-literates than in illiterates; that reading, relative to object naming, increased the interhemispheric functional connectivity between the left and right angular gyri; and that activation in the left angular gyrus exerts top-down modulation on information flow from the left dorsal occipital gyrus to the left supramarginal gyrus. These findings demonstrate how the regions identified in late-literates interact during reading, relative to object naming, in early literates.

403 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new method is proposed which attempts to keep the sensitivity benefits of cluster-based thresholding (and indeed the general concept of "clusters" of signal), while avoiding (or at least minimising) these problems, and is referred to as "threshold-free cluster enhancement" (TFCE).

4,466 citations

Journal ArticleDOI
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Abstract: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

3,699 citations

Journal ArticleDOI
TL;DR: This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE).
Abstract: Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE).

3,691 citations

Journal ArticleDOI
TL;DR: The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses.
Abstract: Over the past 20 years, neuroimaging has become a predominant technique in systems neuroscience. One might envisage that over the next 20 years the neuroimaging of distributed processing and connectivity will play a major role in disclosing the brain's functional architecture and operational principles. The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses. I accepted the invitation to write this review with great pleasure and hope to celebrate and critique the achievements to date, while addressing the challenges ahead.

2,822 citations