scispace - formally typeset
Search or ask a question
Author

Mohamed Ragab Diab

Bio: Mohamed Ragab Diab is an academic researcher from Kafrelsheikh University. The author has contributed to research in topics: Solar still & Solar desalination. The author has an hindex of 1, co-authored 2 publications receiving 4 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a viable solution to provide drinkable water to remote areas using free energy, basic technologies, and a healthy environment, and the challenge of low daily productivity inspires them.
Abstract: Solar desalination is a viable solution to provide drinkable water to remote areas using free energy, basic technologies, and a healthy environment. The challenge of low daily productivity inspires...

29 citations

Journal ArticleDOI
TL;DR: In this article, the authors present, clarify, and analyze the status of several solar distillers with various rotary component arrangements such as a fan, rotating wick, shaft, drum, disc, etc.
Abstract: Access to freshwater is narrowed down every day in the world. Many diseases of human beings are related to water supplies contaminated or unpurified. Nowadays, there are massive water shortages in developed and developing nations due to unplanned mechanisms and water pollution caused by human behavior. Water desalination with no impact on the environment is the necessity of the hour. The distillation of saline or brackish water using free solar energy such as solar still is one of the techniques of water purification providing ultrapure distilled water. Besides, solar still is an economical and eco-friendly method, particularly in arid areas. Solar distillers also provide renewable equipment for freshwater productivity. The still design was affected by several operating and environmental factors. The low productivity of the solar still is its major drawback, so many researchers have studied various models to enhance solar still productivity. This paper aims to review the numerous studies of solar still incorporated with rotating parts that are deemed to be effective and efficient design because rotating parts break water surface tension, increase evaporation area, and improve the still performance. Throughout this detailed review, the scholars intend to present, clarify, and analyze the status of several solar distillers with various rotary component arrangements such as a fan, rotating wick, shaft, drum, disc... etc. In addition, based on the entire work, it was confirmed and recommended that the solar still with rotating parts should be continuously followed to supply potable water efficiently and economically. Different results showed the importance of part rotation (best daily yield & improvement) such as vertical disc distiller (16.5 L/m2/d & 617.4%), drum distiller (9.22 L/m2/d & 350%), moving wick solar still (9.17 L/m2/d & 315%), shaft still (0.83 L/m2/d & 39.49%), and vibratory distiller (5.8 L/m2/d & 132%). These important results obtain the importance of embedding rotating parts into the solar stills.

26 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new convex absorber was used for the first time instead of the flat plate absorber to increase the vaporization and exposure surface areas inside the solar still.

60 citations

Journal ArticleDOI
TL;DR: In this paper , a design modification that includes the use of a convex dish absorber instead of a flat absorber liner was proposed, and a circular stepped surface was used instead of the flat absorbers surface.
Abstract: As well known, the solar distiller is one of the introduced solutions to the freshwater shortage problem, but it is demerited by the low freshwater output. In this paper, a design modification that includes the use of a convex dish absorber instead of a flat absorber liner was proposed. Also, a circular stepped surface was used instead of the flat absorber surface. The modified solar distiller is nominated by dish solar distiller and abbreviated by DSD. In addition, a cotton wick was used as a wetting material for facilitating the evaporation process inside the distiller. Besides, the effect of different water heights in the steps was investigated for 0.50, 1, 1.50, 2, and 3 cm. Finally, the space under the dish absorber is filled with a phase change material (PCM) of paraffin wax mixed with CuO nanoparticles. Experimental results revealed that the best water depth over the steps absorber of DSD that provided the highest freshwater productivity was 1.50 cm, where the average daily yields of DSD (at 1.50 cm) and conventional distillers were reported as 6525 and 2800 mL/m².day, respectively. Then, the productivity of DSD was improved by around 133% over that of the conventional distiller. In addition, when using the phase change material, the average daily distillate of stepped DSD was improved by approximately 178% compared to that of the conventional solar still, where the distillate of conventional still and DSD with PCM at 1.50 cm water depth over the steps absorber of DSD was 2950 and 8200 mL/m².day, respectively. The water productivity of the three established solar distillers has been predicted using machine learning algorithms. Besides, the maximum thermal efficiency of DSD was obtained when using PCM at 1.5 cm water depth over the steps absorber of DSD, where it was 67.62% compared to 31.71% for the conventional distiller. The proposed machine learning algorithms succeeded in predicting water productivity with a high correlation coefficient of 0.99.

32 citations

Journal ArticleDOI
TL;DR: In this article, the authors present, clarify, and analyze the status of several solar distillers with various rotary component arrangements such as a fan, rotating wick, shaft, drum, disc, etc.
Abstract: Access to freshwater is narrowed down every day in the world. Many diseases of human beings are related to water supplies contaminated or unpurified. Nowadays, there are massive water shortages in developed and developing nations due to unplanned mechanisms and water pollution caused by human behavior. Water desalination with no impact on the environment is the necessity of the hour. The distillation of saline or brackish water using free solar energy such as solar still is one of the techniques of water purification providing ultrapure distilled water. Besides, solar still is an economical and eco-friendly method, particularly in arid areas. Solar distillers also provide renewable equipment for freshwater productivity. The still design was affected by several operating and environmental factors. The low productivity of the solar still is its major drawback, so many researchers have studied various models to enhance solar still productivity. This paper aims to review the numerous studies of solar still incorporated with rotating parts that are deemed to be effective and efficient design because rotating parts break water surface tension, increase evaporation area, and improve the still performance. Throughout this detailed review, the scholars intend to present, clarify, and analyze the status of several solar distillers with various rotary component arrangements such as a fan, rotating wick, shaft, drum, disc... etc. In addition, based on the entire work, it was confirmed and recommended that the solar still with rotating parts should be continuously followed to supply potable water efficiently and economically. Different results showed the importance of part rotation (best daily yield & improvement) such as vertical disc distiller (16.5 L/m2/d & 617.4%), drum distiller (9.22 L/m2/d & 350%), moving wick solar still (9.17 L/m2/d & 315%), shaft still (0.83 L/m2/d & 39.49%), and vibratory distiller (5.8 L/m2/d & 132%). These important results obtain the importance of embedding rotating parts into the solar stills.

26 citations

Peer Review
TL;DR: In this article , different desalination techniques are reviewed and reported, and the application of artificial intelligence in improving the performance of desalification systems is reported, while the main conclusions are stated at the end of this chapter.
Abstract: As well known, the basic birthrights of human are the clean air, clean water, healthy food, and green energy. So, clean water is the second important requested need of all living organisms on Earth. To know the importance of water to our human bodies, a deficiency of just 2% in our body’s water supply indicates dehydration. Nowadays, all countries suffer from the problem of freshwater shortage. Despite the importance of clean water for our lives, only 0.01% is available as surface water such as the rivers, lakes, and swamps. These frightening facts have made it a national and humanitarian duty for scientists to research how to overcome the water problem and how to provide alternative sources of safe drinking water using renewable energies. Desalination is the most famous and operative technique used to overcome this problem. In this chapter, the different desalination techniques are reviewed and reported. Also, the solar distillation processes are mentioned with an extended review on the solar distillers. Besides, the application of artificial intelligence in improving the performance of desalination systems is reported. The main conclusions are stated at the end of this chapter.

19 citations