scispace - formally typeset
Search or ask a question
Author

Mohamed Talaat

Bio: Mohamed Talaat is an academic researcher from University of Massachusetts Lowell. The author has contributed to research in topics: Sniffing & Inhalation. The author has an hindex of 3, co-authored 8 publications receiving 21 citations. Previous affiliations of Mohamed Talaat include University of Massachusetts Amherst.
Topics: Sniffing, Inhalation, Lung, Nose, Respiratory tract

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the behavior and fate of respiratory droplets (0.1 − 4 µm) during coughs in a single-path respiratory tract model extending from terminal alveoli to mouth opening was investigated.
Abstract: When an infected person coughs, many virus-laden droplets will be exhaled out of the mouth. Droplets from deep lungs are especially infectious because the alveoli are the major sites of coronavirus replication. However, their exhalation fraction, size distribution, and exiting speeds are unclear. This study investigated the behavior and fate of respiratory droplets (0.1–4 μm) during coughs in a single-path respiratory tract model extending from terminal alveoli to mouth opening. An experimentally measured cough waveform was used to control the alveolar wall motions and the flow boundary conditions at lung branches from G2 to G18. The mouth opening was modeled after the image of a coughing subject captured using a high-speed camera. A well-tested k-ω turbulence model and Lagrangian particle tracking algorithm were applied to simulate cough flow evolutions and droplet dynamics under four cough depths, i.e., tidal volume ratio (TVR) = 0.13, 0.20. 0.32, and 0.42. The results show that 2-μm droplets have the highest exhalation fraction, regardless of cough depths. A nonlinear relationship exists between the droplet exhalation fraction and cough depth due to a complex deposition mechanism confounded by multiscale airway passages, multiregime flows, and drastic transient flow effects. The highest exhalation fraction is 1.6% at the normal cough depth (TVR = 0.32), with a mean exiting speed of 20 m/s. The finding that most exhaled droplets from deep lungs are 2 μm highlights the need for more effective facemasks in blocking 2-μm droplets and smaller both in infectious source control and self-protection from airborne virus-laden droplets.

19 citations

Journal ArticleDOI
TL;DR: The subacinus-averaged doses increase with progressing septal destructions, suggesting an escalating risk factor to the acinar health at the late stages of emphysema.

10 citations

Journal ArticleDOI
TL;DR: Results of this study indicate that empirical correlations obtained from one sub-population cannot be directly applied to others, nor can they be simply scaled as a function of the alveolar size or respiration frequency due to the regime-transiting deposition mechanism that is both localized and dynamic.

8 citations

Journal ArticleDOI
TL;DR: This is the first study, to the author's knowledge, that SSM was applied in lung models with high complexity to quantify the resultant variances from these geometry remodeling, which showed that even though the airway remodeling can be local, its influences on flow partition and deposition distribution can be global.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a method to simulate the airway remodeling in a mouth-lung geometry extending to G9 using statistical shape modeling and Lagrangian tracking.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Investigation of the effects of wearing a surgical mask on inspiratory airflow and dosimetry of airborne, virus-laden aerosols on the face and in the respiratory tract shows that mask-wearing protects the upper airway while protecting the lungs best from particles smaller than 10 µm.
Abstract: Even though face masks are well accepted as tools useful in reducing COVID-19 transmissions, their effectiveness in reducing viral loads in the respiratory tract is unclear. Wearing a mask will significantly alter the airflow and particle dynamics near the face, which can change the inhalability of ambient particles. The objective of this study is to investigate the effects of wearing a surgical mask on inspiratory airflow and dosimetry of airborne, virus-laden aerosols on the face and in the respiratory tract. A computational model was developed that comprised a pleated surgical mask, a face model, and an image-based upper airway geometry. The viral load in the nose was particularly examined with and without a mask. Results show that when breathing without a mask, air enters the mouth and nose through specific paths. When wearing a mask, however, air enters the mouth and nose through the entire surface of the mask at lower speeds, which favors the inhalation of ambient aerosols into the nose. With a 65% filtration efficiency (FE) typical for a three-layer surgical mask, wearing a mask reduces dosimetry for all micrometer particles except those of size 1 µm-3 µm, for which equivalent dosimetry with and without a mask in the upper airway was predicted. Wearing a mask reduces particle penetration into the lungs, regardless of the FE of the mask. The results also show that mask-wearing protects the upper airway (particularly the nose and larynx) best from particles larger than 10 µm while protecting the lungs best from particles smaller than 10 µm.

48 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the SARS CoV-2 virus particle transport and deposition to the terminal airways in a complex 17-generation lung model and showed that a higher percentage of the virus particles are trapped at the upper airways when sleeping and in a light activity condition.
Abstract: The recent outbreak of the SARS CoV-2 virus has had a significant effect on human respiratory health around the world. The contagious disease infected a large proportion of the world population, resulting in long-term health issues and an excessive mortality rate. The SARS CoV-2 virus can spread as small aerosols and enters the respiratory systems through the oral (nose or mouth) airway. The SARS CoV-2 particle transport to the mouth-throat and upper airways is analyzed by the available literature. Due to the tiny size, the virus can travel to the terminal airways of the respiratory system and form a severe health hazard. There is a gap in the understanding of the SARS CoV-2 particle transport to the terminal airways. The present study investigated the SARS CoV-2 virus particle transport and deposition to the terminal airways in a complex 17-generation lung model. This first-ever study demonstrates how far SARS CoV-2 particles can travel in the respiratory system. ANSYS Fluent solver was used to simulate the virus particle transport during sleep and light and heavy activity conditions. Numerical results demonstrate that a higher percentage of the virus particles are trapped at the upper airways when sleeping and in a light activity condition. More virus particles have lung contact in the right lung than the left lung. A comprehensive lobe specific deposition and deposition concentration study was performed. The results of this study provide a precise knowledge of the SARs CoV-2 particle transport to the lower branches and could help the lung health risk assessment system.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the behavior and fate of respiratory droplets (0.1 − 4 µm) during coughs in a single-path respiratory tract model extending from terminal alveoli to mouth opening was investigated.
Abstract: When an infected person coughs, many virus-laden droplets will be exhaled out of the mouth. Droplets from deep lungs are especially infectious because the alveoli are the major sites of coronavirus replication. However, their exhalation fraction, size distribution, and exiting speeds are unclear. This study investigated the behavior and fate of respiratory droplets (0.1–4 μm) during coughs in a single-path respiratory tract model extending from terminal alveoli to mouth opening. An experimentally measured cough waveform was used to control the alveolar wall motions and the flow boundary conditions at lung branches from G2 to G18. The mouth opening was modeled after the image of a coughing subject captured using a high-speed camera. A well-tested k-ω turbulence model and Lagrangian particle tracking algorithm were applied to simulate cough flow evolutions and droplet dynamics under four cough depths, i.e., tidal volume ratio (TVR) = 0.13, 0.20. 0.32, and 0.42. The results show that 2-μm droplets have the highest exhalation fraction, regardless of cough depths. A nonlinear relationship exists between the droplet exhalation fraction and cough depth due to a complex deposition mechanism confounded by multiscale airway passages, multiregime flows, and drastic transient flow effects. The highest exhalation fraction is 1.6% at the normal cough depth (TVR = 0.32), with a mean exiting speed of 20 m/s. The finding that most exhaled droplets from deep lungs are 2 μm highlights the need for more effective facemasks in blocking 2-μm droplets and smaller both in infectious source control and self-protection from airborne virus-laden droplets.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the first report of SARS-CoV-2 detection on field-collected Musca domestica housefly surface and tissue samples using the high-sensitive PCR assay was made.
Abstract: This is the first report of SARS-CoV-2 detection on field-collected Musca domestica housefly surface and tissue samples using the high-sensitive PCR assay which suggests the possible insect-borne transmission. The study was conducted in Shiraz city, southern Iran, in May and Jun 2020. Adult flies were sampled at the outdoor areas of two hospitals treating COVID-19 patients. Fly samples were first washed twice to remove the insect surface attached to SARS-CoV-2 virions. After that, the disinfected fly samples were homogenized. Fly surface washout and homogenate samples were tested using Taq Man real-time PCR assay for the SARS-CoV-2 virus. In a total of 156 houseflies, 75% of samples from the body washout samples were positive for SARS-CoV-2. Strikingly, 37% of the homogenized specimens were positive for the SARS-CoV-2, suggesting the possible infection of the insects or uptake of the virion to the insect metabolism. The other possibility is the houseflies up took the blood or blood fluids of the patients and the RNA of the SARS-CoV-2 survived in the insect body without replicating. Our preliminary findings suggest that the houseflies could transmit SARS-CoV-2 as a mechanical or biological vector especially during the warm seasons while increasing the population and activity of houseflies.

11 citations