scispace - formally typeset
Search or ask a question
Author

Mohammad A. Salahuddin

Bio: Mohammad A. Salahuddin is an academic researcher from University of Waterloo. The author has contributed to research in topics: Cloud computing & Quality of service. The author has an hindex of 15, co-authored 53 publications receiving 1624 citations. Previous affiliations of Mohammad A. Salahuddin include Université du Québec à Montréal & Concordia University.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey delineates the limitations, give insights, research challenges and future opportunities to advance ML in networking, and jointly presents the application of diverse ML techniques in various key areas of networking across different network technologies.
Abstract: Machine Learning (ML) has been enjoying an unprecedented surge in applications that solve problems and enable automation in diverse domains. Primarily, this is due to the explosion in the availability of data, significant improvements in ML techniques, and advancement in computing capabilities. Undoubtedly, ML has been applied to various mundane and complex problems arising in network operation and management. There are various surveys on ML for specific areas in networking or for specific network technologies. This survey is original, since it jointly presents the application of diverse ML techniques in various key areas of networking across different network technologies. In this way, readers will benefit from a comprehensive discussion on the different learning paradigms and ML techniques applied to fundamental problems in networking, including traffic prediction, routing and classification, congestion control, resource and fault management, QoS and QoE management, and network security. Furthermore, this survey delineates the limitations, give insights, research challenges and future opportunities to advance ML in networking. Therefore, this is a timely contribution of the implications of ML for networking, that is pushing the barriers of autonomic network operation and management.

677 citations

Journal ArticleDOI
TL;DR: The fundamental data management techniques employed to ensure consistency, interoperability, granularity, and reusability of the data generated by the underlying IoT for smart cities are described.
Abstract: Integrating the various embedded devices and systems in our environment enables an Internet of Things (IoT) for a smart city. The IoT will generate tremendous amount of data that can be leveraged for safety, efficiency, and infotainment applications and services for city residents. The management of this voluminous data through its lifecycle is fundamental to the realization of smart cities. Therefore, in contrast to existing surveys on smart cities we provide a data-centric perspective, describing the fundamental data management techniques employed to ensure consistency, interoperability, granularity, and reusability of the data generated by the underlying IoT for smart cities. Essentially, the data lifecycle in a smart city is dependent on tightly coupled data management with cross-cutting layers of data security and privacy, and supporting infrastructure. Therefore, we further identify techniques employed for data security and privacy, and discuss the networking and computing technologies that enable smart cities. We highlight the achievements in realizing various aspects of smart cities, present the lessons learned, and identify limitations and research challenges.

390 citations

Journal ArticleDOI
TL;DR: A novel roadside unit (RSU) cloud, a vehicular cloud, as the operational backbone of the vehicle grid in the Internet of Vehicles (IoV), and an efficient heuristic approach to minimize the reconfiguration costs is proposed.
Abstract: We propose a novel roadside unit (RSU) cloud, a vehicular cloud, as the operational backbone of the vehicle grid in the Internet of Vehicles (IoV). The architecture of the proposed RSU cloud consists of traditional and specialized RSUs employing software-defined networking (SDN) to dynamically instantiate, replicate, and/or migrate services. We leverage the deep programmability of SDN to dynamically reconfigure the services hosted in the network and their data forwarding information to efficiently serve the underlying demand from the vehicle grid. We then present a detailed reconfiguration overhead analysis to reduce reconfigurations, which are costly for service providers. We use the reconfiguration cost analysis to design and formulate an integer linear programming (ILP) problem to model our novel RSU cloud resource management (CRM). We begin by solving for the Pareto optimal frontier (POF) of nondominated solutions, such that each solution is a configuration that minimizes either the number of service instances or the RSU cloud infrastructure delay, for a given average demand. Then, we design an efficient heuristic to minimize the reconfiguration costs. A fundamental contribution of our heuristic approach is the use of reinforcement learning to select configurations that minimize reconfiguration costs in the network over the long term. We perform reconfiguration cost analysis and compare the results of our CRM formulation and heuristic. We also show the reduction in reconfiguration costs when using reinforcement learning in comparison to a myopic approach. We show significant improvement in the reconfigurations costs and infrastructure delay when compared to purist service installations.

210 citations

Journal ArticleDOI
TL;DR: This article is intended to stimulate thought and foster discussion on how to defeat the bottlenecks that are limiting the wide deployment of autonomic systems, and the role that ML can play in this regard.
Abstract: Over the last decade, a significant amount of effort has been invested on architecting agile and adaptive management solutions in support of autonomic, self-managing networks. Autonomic networking calls for automated decisions for management actions. This can be realized through a set of pre-defined network management policies engineered from human expert knowledge. However, engineering sufficiently accurate knowledge considering the high complexity of today's networking environment is a difficult task. This has been a particularly limiting factor in the practical deployment of autonomic systems. ML is a powerful technique for extracting knowledge from data. However, there has been little evidence of its application in realizing practical management solutions for autonomic networks. Recent advances in network softwarization and programmability through SDN and NFV, the proliferation of new sources of data, and the availability of lowcost and seemingly infinite storage and compute resource from the cloud are paving the way for the adoption of ML to realize cognitive network management in support of autonomic networking. This article is intended to stimulate thought and foster discussion on how to defeat the bottlenecks that are limiting the wide deployment of autonomic systems, and the role that ML can play in this regard.

169 citations

Journal ArticleDOI
TL;DR: The authors propose an agile, softwarized infrastructure for the flexible, cost-effective, secure, and privacy-preserving deployment of Internet of Things systems for smart healthcare applications and services.
Abstract: The authors propose an agile, softwarized infrastructure for the flexible, cost-effective, secure, and privacy-preserving deployment of Internet of Things systems for smart healthcare applications and services.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
01 Nov 2018-Heliyon
TL;DR: The study found that neural-network models such as feedforward and feedback propagation artificial neural networks are performing better in its application to human problems and proposed feedforwardand feedback propagation ANN models for research focus based on data analysis factors like accuracy, processing speed, latency, fault tolerance, volume, scalability, convergence, and performance.

1,471 citations

Journal ArticleDOI
TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Abstract: The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper, we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.

975 citations