scispace - formally typeset
Search or ask a question
Author

Mohammad Ali Maddah-Ali

Bio: Mohammad Ali Maddah-Ali is an academic researcher from Sharif University of Technology. The author has contributed to research in topics: Cache & Communication channel. The author has an hindex of 52, co-authored 197 publications receiving 13233 citations. Previous affiliations of Mohammad Ali Maddah-Ali include University of Southern California & Bell Labs.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes a novel coded caching scheme that exploits both local and global caching gains, leading to a multiplicative improvement in the peak rate compared with previously known schemes, and argues that the performance of the proposed scheme is within a constant factor of the information-theoretic optimum for all values of the problem parameters.
Abstract: Caching is a technique to reduce peak traffic rates by prefetching popular content into memories at the end users. Conventionally, these memories are used to deliver requested content in part from a locally cached copy rather than through the network. The gain offered by this approach, which we term local caching gain, depends on the local cache size (i.e., the memory available at each individual user). In this paper, we introduce and exploit a second, global, caching gain not utilized by conventional caching schemes. This gain depends on the aggregate global cache size (i.e., the cumulative memory available at all users), even though there is no cooperation among the users. To evaluate and isolate these two gains, we introduce an information-theoretic formulation of the caching problem focusing on its basic structure. For this setting, we propose a novel coded caching scheme that exploits both local and global caching gains, leading to a multiplicative improvement in the peak rate compared with previously known schemes. In particular, the improvement can be on the order of the number of users in the network. In addition, we argue that the performance of the proposed scheme is within a constant factor of the information-theoretic optimum for all values of the problem parameters.

1,857 citations

Journal ArticleDOI
TL;DR: It is shown that by using mixed design schemes, rather than decomposition schemes, and taking the statistical properties of the interference terms into account, the power offset of the system can be improved.
Abstract: In a multiple-antenna system with two transmitters and two receivers, a scenario of data communication, known as the X channel, is studied in which each receiver receives data from both transmitters. In this scenario, it is assumed that each transmitter is unaware of the other transmitter's data (noncooperative scenario). This system can be considered as a combination of two broadcast channels (from the transmitters' points of view) and two multiple-access channels (from the receivers' points of view). Taking advantage of both perspectives, two signaling schemes for such a scenario are developed. In these schemes, some linear filters are employed at the transmitters and at the receivers which decompose the system into either two noninterfering multiple-antenna broadcast subchannels or two noninterfering multiple-antenna multiple-access subchannels. The main objective in the design of the filters is to exploit the structure of the channel matrices to achieve the highest multiplexing gain (MG). It is shown that the proposed noncooperative signaling schemes outperform other known noncooperative schemes in terms of the achievable MG. In particular, it is shown that in some specific cases, the achieved MG is the same as the MG of the system if full cooperation is provided either between the transmitters or between the receivers. In the second part of the paper, it is shown that by using mixed design schemes, rather than decomposition schemes, and taking the statistical properties of the interference terms into account, the power offset of the system can be improved. The power offset represents the horizontal shift in the curve of the sum-rate versus the total power in decibels.

1,176 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose an efficient caching scheme, in which the content placement is performed in a decentralized manner, and despite this lack of coordination, the proposed scheme is nevertheless able to create coded-multicasting opportunities and achieves a rate close to the optimal centralized scheme.
Abstract: Replicating or caching popular content in memories distributed across the network is a technique to reduce peak network loads. Conventionally, the main performance gain of this caching was thought to result from making part of the requested data available closer to end-users. Instead, we recently showed that a much more significant gain can be achieved by using caches to create coded-multicasting opportunities, even for users with different demands, through coding across data streams. These coded-multicasting opportunities are enabled by careful content overlap at the various caches in the network, created by a central coordinating server. In many scenarios, such a central coordinating server may not be available, raising the question if this multicasting gain can still be achieved in a more decentralized setting. In this paper, we propose an efficient caching scheme, in which the content placement is performed in a decentralized manner. In other words, no coordination is required for the content placement. Despite this lack of coordination, the proposed scheme is nevertheless able to create coded-multicasting opportunities and achieves a rate close to the optimal centralized scheme.

752 citations

Posted Content
TL;DR: In this article, the authors proposed a coded caching scheme that exploits both local and global caching gains, leading to a multiplicative improvement in the peak rate compared to previously known schemes, in particular the improvement can be on the order of the number of users in the network.
Abstract: Caching is a technique to reduce peak traffic rates by prefetching popular content into memories at the end users. Conventionally, these memories are used to deliver requested content in part from a locally cached copy rather than through the network. The gain offered by this approach, which we term local caching gain, depends on the local cache size (i.e, the memory available at each individual user). In this paper, we introduce and exploit a second, global, caching gain not utilized by conventional caching schemes. This gain depends on the aggregate global cache size (i.e., the cumulative memory available at all users), even though there is no cooperation among the users. To evaluate and isolate these two gains, we introduce an information-theoretic formulation of the caching problem focusing on its basic structure. For this setting, we propose a novel coded caching scheme that exploits both local and global caching gains, leading to a multiplicative improvement in the peak rate compared to previously known schemes. In particular, the improvement can be on the order of the number of users in the network. Moreover, we argue that the performance of the proposed scheme is within a constant factor of the information-theoretic optimum for all values of the problem parameters.

581 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that in an MIMO broadcast channel with transmit antennas and receivers each with 1 receive antenna, K/1+1/2+···+ 1/K (>;1) degrees of freedom is achievable even when the fed back channel state is completely independent of the current channel state.
Abstract: Transmitter channel state information (CSIT) is crucial for the multiplexing gains offered by advanced interference management techniques such as multiuser multiple-input multiple-output (MIMO) and interference alignment. Such CSIT is usually obtained by feedback from the receivers, but the feedback is subject to delays. The usual approach is to use the fed back information to predict the current channel state and then apply a scheme designed assuming perfect CSIT. When the feedback delay is large compared to the channel coherence time, such a prediction approach completely fails to achieve any multiplexing gain. In this paper, we show that even in this case, the completely stale CSI is still very useful. More concretely, we show that in an MIMO broadcast channel with transmit antennas and receivers each with 1 receive antenna, K/1+1/2+···+1/K (>;1) degrees of freedom is achievable even when the fed back channel state is completely independent of the current channel state. Moreover, we establish that if all receivers have independent and identically distributed channels, then this is the optimal number of degrees of freedom achievable. In the optimal scheme, the transmitter uses the fed back CSI to learn the side information that the receivers receive from previous transmissions rather than to predict the current channel state. Our result can be viewed as the first example of feedback providing a degree-of-freedom gain in memoryless channels.

525 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: For the fully connected K user wireless interference channel where the channel coefficients are time-varying and are drawn from a continuous distribution, the sum capacity is characterized as C(SNR)=K/2log (SNR)+o(log( SNR), which almost surely has K/2 degrees of freedom.
Abstract: For the fully connected K user wireless interference channel where the channel coefficients are time-varying and are drawn from a continuous distribution, the sum capacity is characterized as C(SNR)=K/2log(SNR)+o(log(SNR)) . Thus, the K user time-varying interference channel almost surely has K/2 degrees of freedom. Achievability is based on the idea of interference alignment. Examples are also provided of fully connected K user interference channels with constant (not time-varying) coefficients where the capacity is exactly achieved by interference alignment at all SNR values.

3,385 citations

Journal ArticleDOI
24 Apr 2009
TL;DR: This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.
Abstract: Cognitive radios hold tremendous promise for increasing spectral efficiency in wireless systems. This paper surveys the fundamental capacity limits and associated transmission techniques for different wireless network design paradigms based on this promising technology. These paradigms are unified by the definition of a cognitive radio as an intelligent wireless communication device that exploits side information about its environment to improve spectrum utilization. This side information typically comprises knowledge about the activity, channels, codebooks, and/or messages of other nodes with which the cognitive node shares the spectrum. Based on the nature of the available side information as well as a priori rules about spectrum usage, cognitive radio systems seek to underlay, overlay, or interweave the cognitive radios' signals with the transmissions of noncognitive nodes. We provide a comprehensive summary of the known capacity characterizations in terms of upper and lower bounds for each of these three approaches. The increase in system degrees of freedom obtained through cognitive radios is also illuminated. This information-theoretic survey provides guidelines for the spectral efficiency gains possible through cognitive radios, as well as practical design ideas to mitigate the coexistence challenges in today's crowded spectrum.

2,516 citations