scispace - formally typeset
Search or ask a question
Author

Mohammad Ferdows

Bio: Mohammad Ferdows is an academic researcher from University of Dhaka. The author has contributed to research in topics: Heat transfer & Boundary layer. The author has an hindex of 20, co-authored 128 publications receiving 2797 citations. Previous affiliations of Mohammad Ferdows include Louisiana Tech University & Universiti Sains Malaysia.


Papers
More filters
01 Jan 2011
TL;DR: In this paper, the non-similar solutions are presented which depend on the Magnetic parameter M respectively, the obtained equations have been solved by explicit finite difference method and temperature and concentration profiles are discussed for the different values of the above parameters with different time steps.
Abstract: Unsteady heat and mass flow of a nanofluid past a stretching sheet with thermal radiation in the presence of magnetic field is studied. To obtain non-similar equation, continuity, momentum, energy and concentration equations have been non-dimensionalised by usual transformation. The non-similar solutions are presented here which depends on the Magnetic parameter M respectively . The obtained equations have been solved by explicit finite difference method. The temperature and concentration profiles are discussed for the different values of the above parameters with different time steps.

956 citations

Journal ArticleDOI
TL;DR: In this article, the mesoporous adsorbent was successfully prepared by 6-((2-hydroxy-1-naphthoyl)hydrazono)methyl)benzoic acid (HMBA) embedded onto mesophorous silica monoliths.

321 citations

Journal ArticleDOI
TL;DR: In this article, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated.

175 citations

Journal ArticleDOI
TL;DR: In this article, a mesoporous adsorbent was used for rapid and selective gold (Au(III) recognition and recovery in a simulated urban mining solution, and the results showed that the adsorbed gold was extracted and recovered as pure Au(III), in a two-step elution process.

141 citations

Journal ArticleDOI
TL;DR: In this article, the optimal homotopy analysis method (OHAM) is employed to investigate the steady laminar incompressible free convective flow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat generation/absorption and the thermal slip boundary condition.
Abstract: The optimal homotopy analysis method (OHAM) is employed to investigate the steady laminar incompressible free convective flow of a nanofluid past a chemically reacting upward facing horizontal plate in a porous medium taking into account heat generation/absorption and the thermal slip boundary condition. Using similarity transformations developed by Lie group analysis, the continuity, momentum, energy, and nanoparticle volume fraction equations are transformed into a set of coupled similarity equations. The OHAM solutions are obtained and verified by numerical results using a Runge-Kutta-Fehlberg fourth-fifth order method. The effect of the emerging flow controlling parameters on the dimensionless velocity, temperature, and nanoparticle volume fraction have been presented graphically and discussed. Good agreement is found between analytical and numerical results of the present paper with published results. This close agreement supports our analysis and the accuracy of the numerical computations. This paper also includes a representative set of numerical results for reduced Nusselt and Sherwood numbers in a table for various values of the parameters. It is concluded that the reduced Nusselt number increases with the Lewis number and reaction parameter whist it decreases with the order of the chemical reaction, thermal slip, and generation parameters.

106 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
01 Jul 1968-Nature
TL;DR: The Thermophysical Properties Research Literature Retrieval Guide as discussed by the authors was published by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore.
Abstract: Thermophysical Properties Research Literature Retrieval Guide Edited by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore Second edition, revised and expanded. Book 1: Pp. xxi + 819. Book 2: Pp.621. Book 3: Pp. ix + 1315. (New York: Plenum Press, 1967.) n.p.

1,240 citations

Journal ArticleDOI
TL;DR: In this article, the boundary layer flow induced in a nanofluid due to a linearly stretching sheet is studied numerically and the transport equations include the effects of Brownian motion and thermophoresis.

1,086 citations

Journal ArticleDOI
TL;DR: In this article, the analysis of the second law of thermodynamics applied to an electrically conducting incompressible nanofluid fluid flowing over a porous rotating disk in the presence of an externally applied uniform vertical magnetic field is considered.

624 citations