scispace - formally typeset
Search or ask a question
Author

Mohammad Mehdi Ebadzadeh

Bio: Mohammad Mehdi Ebadzadeh is an academic researcher from Amirkabir University of Technology. The author has contributed to research in topics: Artificial neural network & Fuzzy logic. The author has an hindex of 17, co-authored 85 publications receiving 1465 citations. Previous affiliations of Mohammad Mehdi Ebadzadeh include École Normale Supérieure & Shahid Beheshti University.


Papers
More filters
Journal ArticleDOI
01 Jun 2011
TL;DR: The empirical studies on fifteen static test problems, a dynamic function and a real world engineering problem show that the proposed particle swarm optimization model is quite effective in adapting the value of w in the dynamic and static environments.
Abstract: Particle swarm optimization (PSO) is a stochastic population-based algorithm motivated by intelligent collective behavior of some animals. The most important advantages of the PSO are that PSO is easy to implement and there are few parameters to adjust. The inertia weight (w) is one of PSO's parameters originally proposed by Shi and Eberhart to bring about a balance between the exploration and exploitation characteristics of PSO. Since the introduction of this parameter, there have been a number of proposals of different strategies for determining the value of inertia weight during a course of run. This paper presents the first comprehensive review of the various inertia weight strategies reported in the related literature. These approaches are classified and discussed in three main groups: constant, time-varying and adaptive inertia weights. A new adaptive inertia weight approach is also proposed which uses the success rate of the swarm as its feedback parameter to ascertain the particles' situation in the search space. The empirical studies on fifteen static test problems, a dynamic function and a real world engineering problem show that the proposed particle swarm optimization model is quite effective in adapting the value of w in the dynamic and static environments.

689 citations

Journal ArticleDOI
TL;DR: A new flexible tool is developed to predict the longitudinal dispersion coefficient of rivers and natural streams using adaptive neuro-fuzzy inference system (ANFIS) and can be combined with mathematical models of pollutant transfer or real-time updating of these models.
Abstract: Longitudinal dispersion coefficient in rivers and natural streams usually is estimated by simple inaccurate empirical relations, because of the complexity of the phenomena. So, in this study using adaptive neuro-fuzzy inference system (ANFIS), which have the ability of perception and realization of phenomenon without need for mathematical governing equations, a new flexible tool is developed to predict the longitudinal dispersion coefficient. The process of training and testing of this new model is done using a set of available published filed data. Several statistical and graphical criterions are used to check the accuracy of the model. The dispersion coefficient values predicted by the ANFIS model satisfactorily compared with the measured data. The predicted values were also compared with those predicted using available empirical equations that have been suggested in the literature and it was found that the ANFIS model with R2=0.99 and RMSE=15.18 in training stage and R2=0.91 and RMSE=187.8 in testing stage is superior in predicting the dispersion coefficient than the best accurate empirical equation with R2=0.48 and RMSE=295.7. The presented methodology in this paper is a new approach in estimating dispersion coefficient in streams and can be combined with mathematical models of pollutant transfer or real-time updating of these models.

105 citations

Journal ArticleDOI
TL;DR: An Adaptive Cooperative Particle Swarm Optimizer (ACPSO) is introduced, which facilitates cooperation technique through the usage of the Learning Automata (LA) algorithm, and demonstrates the learning ability of ACPSO in finding correlated variables of the search space.
Abstract: An Adaptive Cooperative Particle Swarm Optimizer (ACPSO) is introduced in this paper, which facilitates cooperation technique through the usage of the Learning Automata (LA) algorithm. The cooperative strategy of ACPSO optimizes the problem collaboratively and evaluates it in different contexts. In the ACPSO algorithm, a set of learning automata associated with dimensions of the problem are trying to find the correlated variables of the search space and optimize the problem intelligently. This collective behavior of ACPSO will fulfill the task of adaptive selection of swarm members. Simulations were conducted on four types of benchmark suites which contain three state-of-the-art numerical optimization benchmark functions in addition to one new set of active coordinate rotated test functions. The results demonstrate the learning ability of ACPSO in finding correlated variables of the search space and also describe how efficiently it can optimize the coordinate rotated multimodal problems, composition functions and high-dimensional multimodal problems.

62 citations

Journal ArticleDOI
TL;DR: The KNN method is shown to be invariant to parameter K in KNN algorithm and in two simulated examples outperforms other neuro-fuzzy approaches in both performance and network compactness.
Abstract: Three new learning algorithms for Takagi-Sugeno-Kang fuzzy system based on training error and genetic algorithm are proposed. The first two algorithms are consisted of two phases. In the first phase, the initial structure of neuro-fuzzy network is created by estimating the optimum points of training data in input-output space using KNN (for the first algorithm) and Mean-Shift methods (for the second algorithm) and keeps adding new neurons based on an error-based algorithm. Then in the second phase, redundant neurons are recognized and removed using a genetic algorithm. The third algorithm then builds the network in one phase using a modified version of error algorithm used in the first two methods. The KNN method is shown to be invariant to parameter K in KNN algorithm and in two simulated examples outperforms other neuro-fuzzy approaches in both performance and network compactness.

51 citations

Journal ArticleDOI
TL;DR: The algorithm, named statistical genetic programming (SGP), uses statistical information—such as variance, mean and correlation coefficient—to improve GP, which increases the evolution rate, the accuracy of the solutions, and the generalization ability, and decreases the rate of code growth.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Reference EntryDOI
15 Oct 2004

2,118 citations