scispace - formally typeset
Search or ask a question
Author

Mohammad Rahimi-Gorji

Bio: Mohammad Rahimi-Gorji is an academic researcher from Ghent University. The author has contributed to research in topics: Nanofluid & Heat transfer. The author has an hindex of 22, co-authored 66 publications receiving 1232 citations. Previous affiliations of Mohammad Rahimi-Gorji include Majmaah University & Ghent University Hospital.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the consequences of nonlinear radiation on MHD Casson nanofluid along thin needle are scrutinized and the situation has been mathematically modelled taking into account the thermo-diffuso and diffuso-thermo effects.

132 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the deposition of thermophoretic particles in the flow of hybrid nanofluid suspended by ferrite nanoparticles past an expansion/contraction moving disk with rotation.

97 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a steady mathematical model for flow and heat transfer of hybrid nanofluid over a stretching sheet, where the amended in the energy equations has been executed by indorsing the viscous dissipation expressions.

96 citations

Journal ArticleDOI
TL;DR: In this article, a comparative study on flow of two diverse combinations of hybrid nanofluids, namely MnZnFe2O4−NiZn Fe4−C10H22 and Cu−Al2O3−C 10H22, was conducted to investigate the thermal and mass transfer in hybrid nanoliquid flow over a stretching cylinder.
Abstract: Nanofluids manage heat in the internal combustion of the engines or machines by avoiding corrosion in the cooling system as well as assist in eradicating the engine’s waste heat. Hence, they are used as coolants in many automotive industries. Inspired by these applications, the thermal and mass transfer in hybrid nanoliquid flow over a stretching cylinder on taking account of magnetic dipole is studied in this investigation. Here, we have done a comparative study on flow of two diverse combinations of hybrid nanofluids, namely MnZnFe2O4−NiZnFe2O4−C10H22 and Cu−Al2O3−C10H22. The modelled equation for the assumed flow is converted to ODEs by opting appropriate similarity variables. These ODEs are solved by utilizing the Runge–Kutta Fehlberg fourth-fifth order (RKF-45) method by adopting shooting technique. Physical clarification of relevant parameters for non-dimensional discrete flow fields are discussed briefly by using graphs. Also, skin friction, Sherwood and Nusselt numbers are deliberated with the assistance of graphs. Results reveal that, the upsurge in ferromagnetic interaction parameter declines the velocity in both fluids but converse trend is detected in temperature and concentration of the liquids. The heightening of ferromagnetic interaction parameter declines the rate of heat and mass transfer.

96 citations

Journal ArticleDOI
TL;DR: In this article, the impact of dispersion of nanoparticle CuO in base liquid water on the performance of flow, thermal conductivity and mass transfer using KKL model in the presence of Cattaneo-Christov heat flux and activation energy is deliberated.
Abstract: The objective of the current paper is to study the two-dimensional, incompressible nanofluid flow over a curved stretching sheet coiled in a circle. Further, the impact of dispersion of nanoparticle CuO in base liquid water on the performance of flow, thermal conductivity and mass transfer using KKL model in the presence of Cattaneo-Christov heat flux and activation energy is deliberated. A curvilinear coordinate system is used to develop the mathematical model describing the flow phenomena in the form of partial differential equations. Further, by means of apt similarity transformations the governing boundary value problems are reduced to ordinary differential equations. Mathematical computations are simplified using Runge-Kutta-Fehlberg-45(RKF-45) process by adopting shooting method. Graphical illustrations of velocity, temperature, concentration gradients for various pertinent parameters are presented. The result reveals that, the heightening of porosity parameter heightens the thermal gradient but converse trend is depicted in velocity gradient. The enhancing values of Schmidt number and chemical reaction rate parameter declines concentration gradient whereas converse trend is depicted for upsurge in activation energy parameter.

85 citations


Cited by
More filters
01 Jan 2009
TL;DR: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks.
Abstract: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

942 citations

Journal ArticleDOI
16 Apr 2021
TL;DR: In this paper, the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid were studied using the Runge-Kutta-Fehlberg fourth-fifth order (RKF-45) method.
Abstract: The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.

163 citations

Journal ArticleDOI
TL;DR: In this article, the thermal properties of AA7072-AA7075/water-based hybrid nanofluid over a curved stretching sheet using non-Fourier heat flux model were analyzed.

142 citations

Journal ArticleDOI
TL;DR: In this article, the authors used hybrid nanofluid past an inside solar wings parabolic trough solar collector (PTSC) to rich the studies of the solar aircraft wings.
Abstract: Solar energy is the leading thermal source from the sun, with huge use of technology such as photovoltaic cells, solar power plates, photovoltaic lighting, and solar pumping water. The current effort deals with solar energy analysis and a technique to enhance solar aircraft effectiveness by using solar and nanotechnological energy. The work is based on the investigation of thermal transfer by utilizing hybrid nanofluid past an inside solar wings parabolic trough solar collector (PTSC) to rich the studies of the solar aircraft wings. The thermal source is titled solar radiative flow. For various properties such as porous media, Cattaneo Christov heat flux, viscous dissipation, play heating and thermal energy flow, the heat transfer efficiency of the wings is verified. In the case of the tangent hyperbolic fluid, the entropy generation analysis was applied. The modeled energy and momentum equations were managed using the well-established numerical plan known as the Keller box process. This paper is made up of double-different kinds of nano solid particles, Cu (copper) and ZrO2 (zirconium dioxide) in EG (ethylene glycol) as standard fluid. Various control parameters are discussed and shown in figures and tables for velocity, shear stress, temperature outlines, frictional factor, and Nusselt number. The efficiency in the aircraft wings in the case of thermal radiation amplification and variable thermal conduction parameters is seen to be improved in terms of thermal transfer. In comparison to the traditional nanofluid, hybrid nanofluid is the ideal source of heat transfer. The thermal efficiency of ZrO2–Cu/EG compared to Cu-EG decreases to a low of 2.6% and peaks to 3.6%.

133 citations