scispace - formally typeset
Search or ask a question
Author

Mohammad Solimannejad

Bio: Mohammad Solimannejad is an academic researcher from Arak University. The author has contributed to research in topics: Ab initio & Hydrogen bond. The author has an hindex of 29, co-authored 205 publications receiving 3021 citations. Previous affiliations of Mohammad Solimannejad include Shiraz University & Donostia International Physics Center.


Papers
More filters
Journal ArticleDOI
TL;DR: Two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond, and the first one is more stable for the smallest halogen derivatives.
Abstract: A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH3, N2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH···N hydrogen bond and the other one with a X···N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

169 citations

Journal ArticleDOI
TL;DR: Quantum calculations at the MP2/aug-cc-pVDZ level examine complexes pairing HSN with aliphatic amines and phosphines with opposite partial charges on the N and P atoms, as well as covalent forces generated by charge transfer effects.
Abstract: Quantum calculations at the MP2/aug-cc-pVDZ level examine complexes pairing HSN with aliphatic amines and phosphines Complexes are cyclic and contain two attractive interactions The first is a SH···N/P H-bond in which the S–H covalent bond contracts and shifts its stretching frequency to the blue, more so for amines than for phosphines The second interaction is different for the amines and phosphines The amines engage in a NH···N H-bond comparable in strength to the aforementioned SH···N interaction In contrast, the second interaction in the phosphine complexes is a direct N···P attraction without an intervening H This interaction is due in part to opposite partial charges on the N and P atoms, as well as covalent forces generated by charge transfer effects

129 citations

Journal ArticleDOI
TL;DR: The dihydrogen-bonded (DHB) complexes formed by (XH)2, with X = Li, Na, BeH, and MgH, with one, two, and four protonic molecules (HCN, HNC, and HCCH) have been studied.
Abstract: The dihydrogen-bonded (DHB) complexes formed by (XH)2, with X = Li, Na, BeH, and MgH, with one, two, and four protonic molecules (HCN, HNC, and HCCH) have been studied. These complexes have been co...

85 citations

Journal ArticleDOI
TL;DR: In the 1:2 complexes, the cooperative and diminutive energetic effects have been analyzed using the many-body interaction energies and the SAPT-DFT methodology has been used to gain insight on the source of the interaction energy.
Abstract: Quantum calculations at the MP2/cc-pVTZ, MP2/aug-cc-pVTZ, and CCSD(T)/cc-pVTZ levels have been used to examine 1:1 and 1:2 complexes between O2NX (X = Cl, Br, and I) with NH3. The interaction of the lone pair of the ammonia with the σ-hole and π-hole of O2NX molecules have been considered. The 1:1 complexes can easily be differentiated using the stretching frequency of the N–X bond. Thus, those complexes with σ-hole interaction show a blue shift of the N–X bond stretching whereas a red shift is observed in the complexes along the π-hole. The SAPT-DFT methodology has been used to gain insight on the source of the interaction energy. In the 1:2 complexes, the cooperative and diminutive energetic effects have been analyzed using the many-body interaction energies. The nature of the interactions has been characterized with the atoms in molecules (AIM) and natural bond orbital (NBO) methodologies. Stabilization energies of 1:1 and 1:2 complexes including the variation of the zero point vibrational energy (ΔZPV...

80 citations

Journal ArticleDOI
TL;DR: A theoretical study of the complexes formed by monosubstituted phosphines (XH2P) and the methyl radical (CH3) has been carried out by means of MP2 and CCSD(T) computational methods.
Abstract: A theoretical study of the complexes formed by monosubstituted phosphines (XH2P) and the methyl radical (CH3) has been carried out by means of MP2 and CCSD(T) computational methods. Two minima configurations have been obtained for each XH2P:CH3 complex. The first one shows small P–C distances and, in general, large interaction energies. It is the most stable one except in the case of the H3P:CH3 complex. The second minimum where the P–C distance is large and resembles a typical weak pnicogen bond interaction shows interaction energies between −9.8 and −3.7 kJ mol–1. A charge transfer from the unpaired electron of the methyl radical to the P–X σ* orbital is responsible for the interaction in the second minima complexes. The transition state (TS) structures that connect the two minima for each XH2P:CH3 complex have been localized and characterized.

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Journal ArticleDOI
TL;DR: Experimental as well as computational studies indicate that halogen and other sigma-hole interactions can be competitive with hydrogen bonding, which itself can be viewed as a subset of s Sigma-hole bonding.
Abstract: A halogen bond is a highly directional, electrostatically-driven noncovalent interaction between a region of positive electrostatic potential on the outer side of the halogen X in a molecule R–X and a negative site B, such as a lone pair of a Lewis base or the π-electrons of an unsaturated system. The positive region on X corresponds to the electronically-depleted outer lobe of the half-filled p-type orbital of X that is involved in forming the covalent bond to R. This depletion is labeled a σ-hole. The resulting positive electrostatic potential is along the extension of the R–X bond, which accounts for the directionality of halogen bonding. Positive σ-holes can also be found on covalently-bonded Group IV–VI atoms, which can similarly interact electrostatically with negative sites. Since positive σ-holes often exist in conjunction with negative potentials on other portions of the atom's surface, such atoms can interact electrostatically with both nucleophiles and electrophiles, as has been observed in surveys of crystallographic structures. Experimental as well as computational studies indicate that halogen and other σ-hole interactions can be competitive with hydrogen bonding, which itself can be viewed as a subset of σ-hole bonding.

1,332 citations