scispace - formally typeset
Search or ask a question
Author

MohammadTaghi Hajiaghayi

Bio: MohammadTaghi Hajiaghayi is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Approximation algorithm & Planar graph. The author has an hindex of 57, co-authored 377 publications receiving 11276 citations. Previous affiliations of MohammadTaghi Hajiaghayi include Massachusetts Institute of Technology & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A new framework for designing fixed-parameter algorithms with subexponential running time---2O(&kradic;) nO(1) is introduced, which applies to a broad family of graph problems, called bidimensional problems, which includes many domination and problems such as vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominate set, disk dimension, and many others restricted to bounded-genus graphs.
Abstract: We introduce a new framework for designing fixed-parameter algorithms with subexponential running time---2O(√k)nO(1). Our results apply to a broad family of graph problems, called bidimensional problems, which includes many domination and problems such as vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating set, disk dimension, and many others restricted to bounded-genus graphs (phrased as bipartite-graph problem). Furthermore, it is fairly straightforward to prove that a problem is bidimensional. In particular, our framework includes, as special cases, all previously known problems to have such subexponential algorithms. Previously, these algorithms applied to planar graphs, single-crossing-minor-free graphs, and/or map graphs; we extend these results to apply to bounded-genus graphs as well. In a parallel development of combinatorial results, we establish an upper bound on the treewidth (or branchwidth) of a bounded-genus graph that excludes some planar graph H as a minor. This bound depends linearly on the size |V(H)| of the excluded graph H and the genus g(G) of the graph G, and applies and extends the graph-minors work of Robertson and Seymour.Building on these results, we develop subexponential fixed-parameter algorithms for dominating set, vertex cover, and set cover in any class of graphs excluding a fixed graph H as a minor. In particular, this general category of graphs includes planar graphs, bounded-genus graphs, single-crossing-minor-free graphs, and any class of graphs that is closed under taking minors. Specifically, the running time is 2O(√k)nh, where h is a constant depending only on H, which is polynomial for k = O(log2n). We introduce a general approach for developing algorithms on H-minor-free graphs, based on structural results about H-minor-free graphs at the heart of Robertson and Seymour's graph-minors work. We believe this approach opens the way to further development on problems in H-minor-free graphs.

356 citations

Proceedings ArticleDOI
22 May 2005
TL;DR: The algorithmic theory of vertex separators, and its relation to the embeddings of certain metric spaces is developed, and an O(√log n) pseudo-approximation for finding balanced vertices in general graphs is exhibited.
Abstract: We develop the algorithmic theory of vertex separators, and its relation to the embeddings of certain metric spaces. Unlike in the edge case, we show that embeddings into L1 (and even Euclidean embeddings) are insufficient, but that the additional structure provided by many embedding theorems does suffice for our purposes.We obtain an O(√log n) approximation for min-ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap which is shown to be Θ(√log n). We also prove various approximate max-flow/min-vertex-cut theorems, which in particular give a constant-factor approximation for min-ratio vertex cuts in any excluded-minor family of graphs. Previously, this was known only for planar graphs, and for general excluded-minor families the best-known ratio was O(log n).These results have a number of applications. We exhibit an O(√log n) pseudo-approximation for finding balanced vertex separators in general graphs. In fact, we achieve an approximation ratio of O(√log opt) where opt is the size of an optimal separator, improving over the previous best bound of O(log opt). Likewise, we obtain improved approximation ratios for treewidth: In any graph of treewidth k, we show how to find a tree decomposition of width at most O(k √log k), whereas previous algorithms yielded O(k log k). For graphs excluding a fixed graph as a minor (which includes, e.g., bounded genus graphs), we give a constant-factor approximation for the treewidth; this can be used to obtain the first polynomial-time approximation schemes for problems like minimum feedback vertex set and minimum connected dominating set in such graphs.

257 citations

Journal ArticleDOI
TL;DR: The foundation of this work is the topological theory of drawings of graphs on surfaces and the results regarding the relation of the size of the largest grid minor in terms of treewidth in bounded-genus graphs and more generally in graphs excluding a fixed graph H as a minor.
Abstract: Our newly developing theory of bidimensional graph problems provides general techniques for designing efficient fixed-parameter algorithms and approximation algorithms for NP-hard graph problems in broad classes of graphs. This theory applies to graph problems that are bidimensional in the sense that (1) the solution value for the k × k grid graph (and similar graphs) grows with k, typically as Ω(k2), and (2) the solution value goes down when contracting edges and optionally when deleting edges. Examples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex-removal parameters, dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge dominating set, connected r-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices). Bidimensional problems have many structural properties; for example, any graph embeddable in a surface of bounded genus has treewidth bounded above by the square root of the problem's solution value. These properties lead to efficient---often subexponential---fixed-parameter algorithms, as well as polynomial-time approximation schemes, for many minor-closed graph classes. One type of minor-closed graph class of particular relevance has bounded local treewidth, in the sense that the treewidth of a graph is bounded above in terms of the diameter; indeed, we show that such a bound is always at most linear. The bidimensionality theory unifies and improves several previous results. The theory is based on algorithmic and combinatorial extensions to parts of the Robertson-Seymour Graph Minor Theory, in particular initiating a parallel theory of graph contractions. The foundation of this work is the topological theory of drawings of graphs on surfaces and our results regarding the relation (the linearity) of the size of the largest grid minor in terms of treewidth in bounded-genus graphs and more generally in graphs excluding a fixed graph H as a minor. In this thesis, we also develop the algorithmic theory of vertex separators, and its relation to the embeddings of certain metric spaces. Unlike in the edge case, we show that embeddings into L1 (and even Euclidean embeddings) are insufficient, but that the additional structure provided by many embedding theorems does suffice for our purposes. We obtain an O( logn ) approximation for min-ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap which is shown to be Θ( logn ). We also prove various approximate max-flow/min-vertex-cut theorems, which in particular give a constant-factor approximation for min-ratio vertex cuts in any excluded-minor family of graphs. Previously, this was known only for planar graphs, and for general excluded-minor families the best-known ratio was O(log n). These results have a number of applications. We exhibit an O( logn ) pseudo-approximation for finding balanced vertex separators in general graphs. Furthermore, we obtain improved approximation ratios for treewidth: In any graph of treewidth k, we show how to find a tree decomposition of width at most O(k logk ), whereas previous algorithms yielded O( k log k). For graphs excluding a fixed graph as a minor, we give a constant-factor approximation for the treewidth; this via the bidimensionality theory can be used to obtain the first polynomial-time approximation schemes for problems like minimum feedback vertex set and minimum connected dominating set in such graphs. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

239 citations

Journal ArticleDOI
TL;DR: It is shown that embeddings into $L_1$ are insufficient but that the additional structure provided by many embedding theorems does suffice for the authors' purposes, and an optimal $O(\log k)$-approximate max-flow/min-vertex-cut theorem for arbitrary vertex-capacitated multicommodity flow instances on $k$ terminals is proved.
Abstract: We develop the algorithmic theory of vertex separators and its relation to the embeddings of certain metric spaces. Unlike in the edge case, we show that embeddings into $L_1$ (and even Euclidean embeddings) are insufficient but that the additional structure provided by many embedding theorems does suffice for our purposes. We obtain an $O(\sqrt{\log n})$ approximation for minimum ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap which is shown to be $\Theta(\sqrt{\log n})$. We also prove an optimal $O(\log k)$-approximate max-flow/min-vertex-cut theorem for arbitrary vertex-capacitated multicommodity flow instances on $k$ terminals. For uniform instances on any excluded-minor family of graphs, we improve this to $O(1)$, and this yields a constant-factor approximation for minimum ratio vertex cuts in such graphs. Previously, this was known only for planar graphs, and for general excluded-minor families the best known ratio was $O(\log n)$. These results have a number of applications. We exhibit an $O(\sqrt{\log n})$ pseudoapproximation for finding balanced vertex separators in general graphs. In fact, we achieve an approximation ratio of $O(\sqrt{\log {opt}})$, where ${opt}$ is the size of an optimal separator, improving over the previous best bound of $O(\log {opt})$. Likewise, we obtain improved approximation ratios for treewidth: in any graph of treewidth $k$, we show how to find a tree decomposition of width at most $O(k \sqrt{\log k})$, whereas previous algorithms yielded $O(k \log k)$. For graphs excluding a fixed graph as a minor (which includes, e.g., bounded genus graphs), we give a constant-factor approximation for the treewidth. This in turn can be used to obtain polynomial-time approximation schemes for several problems in such graphs.

238 citations

Proceedings ArticleDOI
23 Oct 2005
TL;DR: A polynomial-time algorithm is developed using topological graph theory to decompose a graph into the structure guaranteed by the theorem: a clique-sum of pieces almost-embeddable into bounded-genus surfaces.
Abstract: At the core of the seminal graph minor theory of Robertson and Seymour is a powerful structural theorem capturing the structure of graphs excluding a fixed minor. This result is used throughout graph theory and graph algorithms, but is existential. We develop a polynomial-time algorithm using topological graph theory to decompose a graph into the structure guaranteed by the theorem: a clique-sum of pieces almost-embeddable into bounded-genus surfaces. This result has many applications. In particular we show applications to developing many approximation algorithms, including a 2-approximation to graph coloring, constant-factor approximations to treewidth and the largest grid minor, combinatorial polylogarithmic approximation to half-integral multicommodity flow, subexponential fixed-parameter algorithms, and PTASs for many minimization and maximization problems, on graphs excluding a fixed minor.

223 citations


Cited by
More filters
Book
01 Jan 2009

8,216 citations

Journal ArticleDOI
TL;DR: The problem of finding the most influential nodes in a social network is NP-hard as mentioned in this paper, and the first provable approximation guarantees for efficient algorithms were provided by Domingos et al. using an analysis framework based on submodular functions.
Abstract: Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Recently, motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here, and we provide the first provable approximation guarantees for efficient algorithms. Using an analysis framework based on submodular functions, we show that a natural greedy strategy obtains a solution that is provably within 63% of optimal for several classes of models; our framework suggests a general approach for reasoning about the performance guarantees of algorithms for these types of influence problems in social networks.We also provide computational experiments on large collaboration networks, showing that in addition to their provable guarantees, our approximation algorithms significantly out-perform node-selection heuristics based on the well-studied notions of degree centrality and distance centrality from the field of social networks.

4,390 citations

Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations

Journal ArticleDOI
TL;DR: A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolations, phenomena near epidemic thresholds, condensation transitions,critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned.
Abstract: The combination of the compactness of networks, featuring small diameters, and their complex architectures results in a variety of critical effects dramatically different from those in cooperative systems on lattices. In the last few years, important steps have been made toward understanding the qualitatively new critical phenomena in complex networks. The results, concepts, and methods of this rapidly developing field are reviewed. Two closely related classes of these critical phenomena are considered, namely, structural phase transitions in the network architectures and transitions in cooperative models on networks as substrates. Systems where a network and interacting agents on it influence each other are also discussed. A wide range of critical phenomena in equilibrium and growing networks including the birth of the giant connected component, percolation, $k$-core percolation, phenomena near epidemic thresholds, condensation transitions, critical phenomena in spin models placed on networks, synchronization, and self-organized criticality effects in interacting systems on networks are mentioned. Strong finite-size effects in these systems and open problems and perspectives are also discussed.

1,996 citations

Book
01 Jan 2007
TL;DR: A new era of theoretical computer science addresses fundamental problems about auctions, networks, and human behavior in a bid to solve the challenges of 21st Century finance.
Abstract: A new era of theoretical computer science addresses fundamental problems about auctions, networks, and human behavior.

1,994 citations