scispace - formally typeset
Search or ask a question

Showing papers by "Mohammed Abo-Zahhad published in 2012"


Journal ArticleDOI
TL;DR: Comparison between these techniques in terms of their precision in exon and intron classification is introduced and it is found that the classification performance is a function of the numerical representation method.
Abstract: Using digital signal processing in genomic field is a key of solving most problems in this area such as prediction of gene locations in a genomic sequence and identifying the defect regions in DNA sequence. It is found that, using DSP is possible only if the symbol sequences are mapped into numbers. In literature many techniques have been developed for numerical representation of DNA sequences. They can be classified into two types, Fixed Mapping (FM) and Physico Chemical Property Based Mapping (PCPBM ( . The open question is that, which one of these numerical representation techniques is to be used? The answer to this question needs understanding these numerical representations considering the fact that each mapping depends on a particular application. This paper explains this answer and introduces comparison between these techniques in terms of their precision in exon and intron classification. Simulations are carried out using short sequences of the human genome (GRch37/hg19). The final results indicate that the classification performance is a function of the numerical representation method.

51 citations


Journal ArticleDOI
TL;DR: An efficient electrocardiogram signals compression technique based on QRS detection, estimation, and 2D DWT coefficients thresholding achieves high compression ratio with relatively low distortion and low computational complexity in comparison with other methods.
Abstract: This paper presents an efficient electrocardiogram (ECG) signals compression technique based on QRS detection, estimation, and 2D DWT coefficients thresholding. Firstly, the original ECG signal is preprocessed by detecting QRS complex, then the difference between the preprocessed ECG signal and the estimated QRS-complex waveform is estimated. 2D approaches utilize the fact that ECG signals generally show redundancy between adjacent beats and between adjacent samples. The error signal is cut and aligned to form a 2-D matrix, then the 2-D matrix is wavelet transformed and the resulting wavelet coefficients are segmented into groups and thresholded. There are two grouping techniques proposed to segment the DWT coefficients. The threshold level of each group of coefficients is calculated based on entropy of coefficients. The resulted thresholded DWT coefficients are coded using the coding technique given in the work by (Abo-Zahhad and Rajoub, 2002). The compression algorithm is tested for 24 different records selected from the MIT-BIH Arrhythmia Database (MIT-BIH Arrhythmia Database). The experimental results show that the proposed method achieves high compression ratio with relatively low distortion and low computational complexity in comparison with other methods.

42 citations


Journal ArticleDOI
TL;DR: A new hybrid technique for mobile location determination utilizing Universal Mobile Telecommunication System (UMTS) network, Mobile Station (MS) and GPS positioning characteristics is introduced.
Abstract: A hybrid positioning system is merely one in which multiple systems are used for positioning purposes. This virtually always, though not necessarily, includes Global Positioning System (GPS) as it is the only global positioning network currently. Combination of mobile network and GPS positioning techniques provide a higher accuracy of mobile location than positions based on a standalone GPS or mobile network based positions. High accuracy of mobile position is mainly essential for emergency, military and many other location based services such as productivity enhancement, entertainment, position-based advertising, navigation, asset management and geographic information access. Assisted GPS, also known as A-GPS or AGPS, enhances the performance of the standard GPS in devices connected to the cellular network. This paper introduces a new hybrid technique for mobile location determination utilizing Universal Mobile Telecommunication System (UMTS) network, Mobile Station (MS) and GPS positioning characteristics. Different positioning techniques are chosen according to positioning parameters. The minimum required number of UMTS base stations, location measurement units and GPS satellites are calculated in this paper. The required number of GPS satellites is reduced from four satellites to three ones while using three dimension positioning and from three satellites to two ones at two dimension positioning. Moreover, MS receiver main functions including both network and GPS received paths to achieve output assisted data are discussed. In this paper many drawbacks such as indoor positioning, receiver high power consumption, delay in first time to fix position, low position accuracy as well as large number of required satellites and base stations are improved.

9 citations


Journal ArticleDOI
TL;DR: Simulation results show that the proposed adaptive mutation approach for fastening the convergence of immune algorithms efficiently improves IA’s performance and prevents it from getting stuck at a local optimum.
Abstract: This paper presents a new adaptive mutation approach for fastening the convergence of immune algorithms (IAs). This method is adopted to realize the twin goals of maintaining diversity in the population and sustaining the convergence capacity of the IA. In this method, the mutation rate (pm) is adaptively varied depending on the fitness values of the solutions. Solutions of high fitness are protected, while solutions with sub-average fitness are totally disrupted. A solution to the problem of deciding the optimal value of pm is obtained. Experiments are carried out to compare the proposed approach to traditional one on a set of optimization problems. These are namely: 1) an exponential multi-variable function; 2) a rapidly varying multimodal function and 3) design of a second order 2-D narrow band recursive LPF. Simulation results show that the proposed method efficiently improves IA’s performance and prevents it from getting stuck at a local optimum.

6 citations