scispace - formally typeset


Mohammed Farid

Bio: Mohammed Farid is an academic researcher from University of Auckland. The author has contributed to research in topic(s): Thermal energy storage & Phase-change material. The author has an hindex of 61, co-authored 299 publication(s) receiving 15820 citation(s). Previous affiliations of Mohammed Farid include Jordan University of Science and Technology & Universiti Tun Hussein Onn Malaysia.
More filters

Journal ArticleDOI
Abstract: Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed.

2,338 citations

Journal ArticleDOI
Amar M. Khudhair1, Mohammed Farid1Institutions (1)
Abstract: Energy storage in the walls, ceiling and floor of buildings may be enhanced by encapsulating suitable phase change materials (PCMs) within these surfaces to capture solar energy directly and increase human comfort by decreasing the frequency of internal air temperature swings and maintaining the temperature closer to the desired temperature for a longer period of time. This paper summarizes the investigation and analysis of thermal energy storage systems incorporating PCMs for use in building applications. Researches on thermal storage in which the PCM is encapsulated in concrete, gypsum wallboard, ceiling and floor have been ongoing for some time and are discussed. The problems associated with the application of PCMs with regard to the selection of materials and the methods used to contain them are also discussed.

1,164 citations

Journal ArticleDOI
Eduard Oró1, A. de Gracia1, Albert Castell1, Mohammed Farid2  +1 moreInstitutions (2)
Abstract: Thermal energy storage (TES) is a technology with a high potential for different thermal applications. It is well known that TES could be the most appropriate way and method to correct the gap between the demand and supply of energy and therefore it has become a very attractive technology. In this paper, a review of TES for cold storage applications using solid–liquid phase change materials has been carried out. The scope of the work was focussed on different aspects: phase change materials (PCMs), encapsulation, heat transfer enhancement, and the effect of storage on food quality. Materials used by researchers as potential PCM at low temperatures (less than 20 C) are summarized and some of their thermophysical properties are reported. Over 88 materials that can be used as PCM, and about 40 commercially available PCM have been listed. Problems in long term stability of the materials, such as corrosion, phase segregation, stability under extended cycling or subcooling are discussed. Heat transfer is considered both from theoretical and experimental point of view and the different methods of PCM encapsulation are reviewed. Many applications of PCM at low temperature can be found, such as, ice storage, conservation and transport of temperature sensitive materials and in air conditioning, cold stores, and refrigerated trucks.

692 citations

Journal ArticleDOI
Abstract: The batch removal of hexavalent chromium (Cr(Vl)) from wastewater under different experimental conditions using economic adsorbents was investigated in this study. These adsorbents were produced from the pyrolysis and activation of the waste tyres (TAC) and from the pyrolysis of sawdust (SPC). The performance of these adsorbents against commercial activated carbon F400 (CAC) has also been carried out. The removal was favoured at low pH, with maximum removal at pH = 2 for all types of carbon. The effects of concentration, temperature and particle size have been reported. All sorbents were found to efficiently remove Cr(VI) from solution. The batch sorption kinetics have been tested for a first-order reversible reaction, a first-order and second-order reaction. The rate constants of adsorption for all these kinetic models have been calculated. The applicability of the Langmuir isotherm for the present system has been tested at different temperatures. The thermodynamic parameters (AGO, K,) obtained indicate the endothermic nature of Cr(Vl) adsorption on TAC, SPC and CAC. (C) 2001 Elsevier Science B.V. All rights reserved.

570 citations

Journal ArticleDOI
Abstract: Microencapsulation of phase change materials (PCMs) is an effective way of enhancing their thermal conductivity and preventing possible interaction with the surrounding and leakage during the melting process, where there is no complete overview of the several methods and techniques for microencapsulation of different kinds of PCMs that leads to microcapsules with different morphology, structure, and thermal properties. In this paper, microencapsulation methods are perused and classified into three categories, i.e. physical, physic-chemical, and chemical methods. It summarizes the techniques used for microencapsulation of PCMs and hence provides a useful tool for the researchers working in this area. Among all the microencapsulation methods, the most common methods described in the literature for the production of microencapsulated phase change materials (MEPCMs) are interfacial polymerization, suspension polymerization, coacervation, emulsion polymerization, and spray drying.

484 citations

Cited by
More filters

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

12,326 citations

Journal ArticleDOI
K.Y. Foo1, B.H. Hameed1Institutions (1)
Abstract: Concern about environmental protection has increased over the years from a global viewpoint. To date, the prevalence of adsorption separation in the environmental chemistry remains an aesthetic attention and consideration abroad the nations, owning to its low initial cost, simplicity of design, ease of operation, insensitivity to toxic substances and complete removal of pollutants even from dilute solutions. With the renaissance of isotherms modeling, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of adsorption isotherms modeling, its fundamental characteristics and mathematical derivations. Moreover, the key advance of the error functions, its utilization principles together with the comparisons of linearized and non-linearized isotherm models have been highlighted and discussed. Conclusively, the expanding of the nonlinear isotherms represents a potentially viable and powerful tool, leading to the superior improvement in the area of adsorption science.

4,815 citations

Journal ArticleDOI
Abstract: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.

3,746 citations

Journal ArticleDOI
Chang Liu1, Feng Li1, Lai-Peng Ma1, Hui-Ming Cheng1Institutions (1)
TL;DR: This Review introduces several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage, and the current status of high-performance hydrogen storage materials for on-board applications and electrochemicals for lithium-ion batteries and supercapacitors.
Abstract: [Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;

3,670 citations

Journal ArticleDOI
Abstract: Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid–liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references.

3,637 citations

Network Information
Related Authors (5)
Filipa V.M. Silva

90 papers, 2.4K citations

63% related
Sulaiman Al-Zuhair

110 papers, 3.2K citations

59% related
Camila Barreneche

127 papers, 5K citations

57% related
Xiao Dong Chen

1.5K papers, 30.1K citations

57% related
Yousef Haik

205 papers, 4.8K citations

57% related

Author's H-index: 61

No. of papers from the Author in previous years