scispace - formally typeset
Search or ask a question
Author

Mohammed J. Al-Marri

Other affiliations: Qatar Airways, University of Rostock
Bio: Mohammed J. Al-Marri is an academic researcher from Qatar University. The author has contributed to research in topics: Adsorption & Methane. The author has an hindex of 27, co-authored 89 publications receiving 3363 citations. Previous affiliations of Mohammed J. Al-Marri include Qatar Airways & University of Rostock.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the use of carbon nanotubes (CNTs), member of the fullerene structural family, is considered with special focus on the removal of heavy metals from water (lead, chromium, cadmium, arsenic, copper, zinc and nickel).

946 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent literature that has been dedicated to utilizing electrocoagulation for water treatment, focusing on current successes on specific applications in water and wastewater treatment, as well as potentials for future applications is offered.

537 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the most recent information available on all aspects of the post-combustion carbon capture processes is presented, including chemical analysis, reaction kinetics, CO2 solubility, and innovative configurations of absorption and stripping columns as well as information on technology applications.

377 citations

Journal ArticleDOI
TL;DR: In this paper, the current understanding and developments in the electrostatic phase separation are reviewed, and the potential of microfluidics platforms, non-uniform fields, coalescence on the dielectric surfaces to enhance the electrocoalescence rate are also considered.
Abstract: The current understanding and developments in the electrostatic phase separation are reviewed. The literature covers predominantly two immiscible and inter-dispersed liquids following the last review on the topic some 15 years. Electrocoalescence kinetics and governing parameters, such as the applied field, liquid properties, drop shape and flow, are considered. The unfavorable effects, such as chain formation and partial coalescence, are discussed in detail. Moreover, the prospects of microfluidics platforms, non-uniform fields, coalescence on the dielectric surfaces to enhance the electrocoalescence rate are also considered. In addition to the electrocoalescence in water-in-oil emulsions the research in oil-in-oil coalescence is also discussed. Finally the studies in electrocoalescer development and commercial devices are also surveyed. The analysis of the literature reveals that the use of pulsed DC and AC electric fields is preferred over constant DC fields for efficient coalescence; but the selection of the optimum field frequency a priori is still not possible and requires further research. Some recent studies have helped to clarify important aspects of the process such as partial coalescence and drop–drop non-coalescence. On the other hand, some key phenomena such as thin film breakup and chain formation are still unclear. Some designs of inline electrocoalescers have recently been proposed; however with limited success: the inadequate knowledge of the underlying physics still prevents this technology from leaving the realm of empiricism and fully developing in one based on rigorous scientific methodology.

184 citations

Journal ArticleDOI
TL;DR: In this article, the long-term stability of as-synthesized CsPbBr3 perovskite quantum dots (QDs) suspended in toluene at various environmental conditions was investigated.
Abstract: Due to their superior photoluminescence (PL) quantum yield (QY) and tunable optical band gap, all-inorganic CsPbBr3 perovskite quantum dots (QDs) have attracted intensive attention for the application in solar cells, light emitting diodes (LED), photodetectors and laser devices. In this scenario, the stability of such materials becomes a critical factor to be revealed. We hereby investigated the long-term stability of as-synthesized CsPbBr3 QDs suspended in toluene at various environmental conditions. We found light illumination would induce drastic photo-degradation of CsPbBr3 QDs. The steady-state spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) verified that CsPbBr3 QDs tend to aggregate to form larger particles under continuous light soaking. In addition, decreasing PL QY of the QDs during light soaking indicates the formation of trap sites. Our work reveals that the main origin of instability in CsPbBr3 QDs and provides reference to engineer such QDs towards optimal device application.

175 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales.
Abstract: Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

2,088 citations

Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a sketch about treatment technologies followed by their heavy metal capture capacity from industrial effluent, the treatment performance, their remediation capacity and probable environmental and health impacts were deliberated in this review article.
Abstract: The controversy related to the environment pollution is increasing in human life and in the eco-system. Especially, the water pollution is growing rapidly due to the wastewater discharge from the industries. The only way to find the new water resource is the reuse of treated wastewater. Several remediation technologies are available which provides a convenience to reuse the reclaimed wastewater. Heavy metals like Zn, Cu, Pb, Ni, Cd, Hg, etc. contributes various environmental problems based on their toxicity. These toxic metals are exposed to human and environment, the accumulation of ions takes place which causes serious health and environmental hazards. Hence, it is a major concern in the environment. Due to this concern, the significance of developing technology for removing heavy metals has been increased. This paper contributes the outline of new literature with two objectives. First, it provides the sketch about treatment technologies followed by their heavy metal capture capacity from industrial effluent. The treatment performance, their remediation capacity and probable environmental and health impacts were deliberated in this review article. Conclusively, this review paper furnishes the information about the important methods incorporated in lab scale studies which are required to identify the feasible and convenient wastewater treatment. Moreover, attempts have been made to confer the emphasis on sequestration of heavy metals from industrial effluent and establish the scientific background for reducing the discharge of heavy metals into the environment.

1,040 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art of available technologies for water purification are reviewed and their field of application for heavy metal ion removal is discussed, as heavy metal ions are the most harmful and widespread contaminants.
Abstract: Water pollution is a global problem threatening the entire biosphere and affecting the life of many millions of people around the world. Not only is water pollution one of the foremost global risk factors for illness, diseases and death, but it also contributes to the continuous reduction of the available drinkable water worldwide. Delivering valuable solutions, which are easy to implement and affordable, often remains a challenge. Here we review the current state-of-the-art of available technologies for water purification and discuss their field of application for heavy metal ion removal, as heavy metal ions are the most harmful and widespread contaminants. We consider each technology in the context of sustainability, a largely neglected key factor, which may actually play a pivotal role in the implementation of each technology in real applications, and we introduce a compact index, the Ranking Efficiency Product (REP), to evaluate the efficiency and ease of implementation of the various technologies in this broader perspective. Emerging technologies, for which a detailed quantitative analysis and assessment is not yet possible according to this methodology, either due to scarcity or inhomogeneity of data, are discussed in the final part of the manuscript.

838 citations