scispace - formally typeset
Search or ask a question
Author

Mohammed M Al-Jawad

Bio: Mohammed M Al-Jawad is an academic researcher. The author has contributed to research in topics: Artificial intelligence & Computer science. The author has an hindex of 1, co-authored 1 publications receiving 52 citations.

Papers
More filters
Journal ArticleDOI
01 May 2020-Entropy
TL;DR: This study presents the combination of deep learning of extracted features with the Q-deformed entropy handcrafted features for discriminating between COVID-19 coronavirus, pneumonia and healthy computed tomography (CT) lung scans.
Abstract: Many health systems over the world have collapsed due to limited capacity and a dramatic increase of suspected COVID-19 cases. What has emerged is the need for finding an efficient, quick and accurate method to mitigate the overloading of radiologists' efforts to diagnose the suspected cases. This study presents the combination of deep learning of extracted features with the Q-deformed entropy handcrafted features for discriminating between COVID-19 coronavirus, pneumonia and healthy computed tomography (CT) lung scans. In this study, pre-processing is used to reduce the effect of intensity variations between CT slices. Then histogram thresholding is used to isolate the background of the CT lung scan. Each CT lung scan undergoes a feature extraction which involves deep learning and a Q-deformed entropy algorithm. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, combining all extracted features significantly improves the performance of the LSTM network to precisely discriminate between COVID-19, pneumonia and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 321 patients is 99.68%.

110 citations

Journal ArticleDOI
TL;DR: The Corpus of Iraqi Arabic Dialect (CIAD) is introduced and the created corpus has been validated using eight different combinations of four feature-selections approaches and two versions of Support Vector Machine (SVM) algorithm.
Abstract: anwar.alnawas@stu.edu.iq, https://orcid.org/0000-0001-9181-9377 Abstract The number of Twitter users in Iraq has increased significantly in recent years. Major events, the political situation in the country, had a significant impact on the content of Twitter and affected the tweets of Iraqi users. Creating an Iraqi Arabic Dialect corpus is crucial for sentiment analysis to study such behaviors. Since no such corpus existed, this paper introduces the Corpus of Iraqi Arabic Dialect (CIAD). The corpus has been collected, annotated and made publicly accessible to other researchers for further investigation. Furthermore, the created corpus has been validated using eight different combinations of four feature-selections approaches and two versions of Support Vector Machine (SVM) algorithm. Various performance measures were calculated. The obtained accuracy, 78 %, indicates a promising

1 citations

Journal ArticleDOI
TL;DR: To predict learning outcomes using data mining techniques, student data are collected and analyzed and the obtained result shows the significant of some attributes in predicting learning outcomes.
Abstract: E-Learning has become an essential teaching approach during the COVID-19 pandemic. All over the world, various internet-based learning management systems (Google classroom, Moodle, etc.) were adopted to convey knowledge and enhance learning outcomes. However, measuring learning outcomes and knowledge acquisition in E-Learning environment is a controversial issue. To this end, this paper aims to predict learning outcomes using data mining techniques. Student data are collected and analyzed to construct the prediction model. The collected data covered students from various undergraduate studies. Cross-Industry Standard Process for Data Mining is used as a research model. The obtained result shows the significant of some attributes in predicting learning outcomes. Four correlation-based attributes selection schemas are applied. The selected attributes are examined using four data mining algorithms: random forest, k-nearest neighbors, Decision Tree, and neural network. The overall performance of the constructed mining models is evaluated using various performance measures: Accuracy, Precision, Recall and F1-score are calculated. Overall, an 86% accuracy is secured.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of deep learning based systems for the detection of the new coronavirus (COVID-19) outbreak has been presented, which can be potentially further utilized to combat the outbreak.
Abstract: Novel coronavirus (COVID-19) outbreak, has raised a calamitous situation all over the world and has become one of the most acute and severe ailments in the past hundred years. The prevalence rate of COVID-19 is rapidly rising every day throughout the globe. Although no vaccines for this pandemic have been discovered yet, deep learning techniques proved themselves to be a powerful tool in the arsenal used by clinicians for the automatic diagnosis of COVID-19. This paper aims to overview the recently developed systems based on deep learning techniques using different medical imaging modalities like Computer Tomography (CT) and X-ray. This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks. It also highlights the data partitioning techniques and various performance measures developed by researchers in this field. A taxonomy is drawn to categorize the recent works for proper insight. Finally, we conclude by addressing the challenges associated with the use of deep learning methods for COVID-19 detection and probable future trends in this research area. The aim of this paper is to facilitate experts (medical or otherwise) and technicians in understanding the ways deep learning techniques are used in this regard and how they can be potentially further utilized to combat the outbreak of COVID-19.

171 citations

Posted Content
TL;DR: A complete survey of studies on the application of DL techniques for COVID-19 diagnostic and automated segmentation of lungs is discussed, concentrating on works that used X-Ray and CT images.
Abstract: Coronavirus, or COVID-19, is a hazardous disease that has endangered the health of many people around the world by directly affecting the lungs. COVID-19 is a medium-sized, coated virus with a single-stranded RNA. This virus has one of the largest RNA genomes and is approximately 120 nm. The X-Ray and computed tomography (CT) imaging modalities are widely used to obtain a fast and accurate medical diagnosis. Identifying COVID-19 from these medical images is extremely challenging as it is time-consuming, demanding, and prone to human errors. Hence, artificial intelligence (AI) methodologies can be used to obtain consistent high performance. Among the AI methodologies, deep learning (DL) networks have gained much popularity compared to traditional machine learning (ML) methods. Unlike ML techniques, all stages of feature extraction, feature selection, and classification are accomplished automatically in DL models. In this paper, a complete survey of studies on the application of DL techniques for COVID-19 diagnostic and automated segmentation of lungs is discussed, concentrating on works that used X-Ray and CT images. Additionally, a review of papers on the forecasting of coronavirus prevalence in different parts of the world with DL techniques is presented. Lastly, the challenges faced in the automated detection of COVID-19 using DL techniques and directions for future research are discussed.

156 citations

Journal ArticleDOI
TL;DR: An overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc.
Abstract: Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.

126 citations

Posted Content
TL;DR: This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks and highlights the data partitioning techniques and various performance measures developed by researchers in this field.
Abstract: Novel coronavirus (COVID-19) outbreak, has raised a calamitous situation all over the world and has become one of the most acute and severe ailments in the past hundred years. The prevalence rate of COVID-19 is rapidly rising every day throughout the globe. Although no vaccines for this pandemic have been discovered yet, deep learning techniques proved themselves to be a powerful tool in the arsenal used by clinicians for the automatic diagnosis of COVID-19. This paper aims to overview the recently developed systems based on deep learning techniques using different medical imaging modalities like Computer Tomography (CT) and X-ray. This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks. It also highlights the data partitioning techniques and various performance measures developed by researchers in this field. A taxonomy is drawn to categorize the recent works for proper insight. Finally, we conclude by addressing the challenges associated with the use of deep learning methods for COVID-19 detection and probable future trends in this research area. This paper is intended to provide experts (medical or otherwise) and technicians with new insights into the ways deep learning techniques are used in this regard and how they potentially further works in combatting the outbreak of COVID-19.

111 citations

Journal ArticleDOI
TL;DR: The results obtained by verification with two different metaheuristic algorithms proved that the approach proposed can help experts during COVID-19 diagnostic studies.

83 citations