Author
Mohd. Azraai Kassim
Bio: Mohd. Azraai Kassim is an academic researcher from Universiti Teknologi Malaysia. The author has contributed to research in topics: Ultrafiltration & Membrane. The author has an hindex of 13, co-authored 29 publications receiving 2018 citations.
Papers
More filters
TL;DR: In this paper, the authors highlight the recent development of advanced membrane technology such as surface modification, addition of inorganic particles in polymer membrane and the development of ceramic membranes and discuss the effect of operating parameters on the membrane performance.
Abstract: Membrane separation processes have become an emerging technology for the treatment of oily wastewater due to high oil removal efficiency and relatively facile operational process. This review will highlight the recent development of advanced membrane technology such as surface modification, addition of inorganic particles in polymer membrane and the development of ceramic membranes. Additionally, the effect of operating parameters on the membrane performance is discussed in detail. Future outlooks in oil–water membrane separation are also discussed to further broaden the research and development related to this technology.
933 citations
TL;DR: The major breakthrough in the preparation of thin film composite (TFC) membrane via interfacial polymerization technique has resulted in tremendous achievements in producing a membrane with a right combination of flux and salt rejection, and generating huge interest in industrial sectors as discussed by the authors.
Abstract: The major breakthrough in the preparation of thin film composite (TFC) membrane via interfacial polymerization technique has resulted in tremendous achievements in producing a membrane with a right combination of flux and salt rejection, and generating huge interest in industrial sectors. Over the past decade, there have been intensive and continuous efforts in the development of TFC membrane, both from the industry and academia with the interests to further improve the membrane productivity and selectivity as well as its tolerance against chlorine, solvent, fouling, etc. On basis of a brief introduction of the development history of TFC membranes, this paper reviews the recent research progress of the TFC membrane science and technology, particularly in the fields of water-related separation processes. Reviewing the research progress is imperative and necessary in order to provide an insight for the future development and perhaps open a door to extend the applications to other more challenging areas.
747 citations
TL;DR: Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability.
Abstract: The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.
165 citations
TL;DR: In this article, a review of membrane technology is classified into different processes and, for each process, progress made since the onset of this millennium in the radioactive decontamination of water is shown.
Abstract: The recent accident at the Fukushima Daiichi Nuclear Power Plant caused by the Great East Japan Earthquake of March 11, 2012 reminded us vividly of the serious hazards of radioactive substances spread over a wide range of the affected region. Currently, there is a great concern over the effect of contaminated soil and water on the health and safety of the inhabitants of the region. Hence, the advancement in the technologies of nuclear waste treatment is of vital importance if we decide to live with nuclear power to maintain our modern civilization. Among various separation technologies used, membrane technologies have been chosen in this article since they are considered as one of the emerging technologies with many advantages over the conventional processes. In this review the membrane technology is classified into different processes and, for each process, progress made since the onset of this millennium in the radioactive decontamination of water is shown. The new directions are shown by considering the progress made in membrane manufacturing and membrane processes. Thus, the combined efforts of the researchers who are engaged in membrane and membrane process design with those who are engaged in nuclear waste treatment near the plant sites were highlighted.
159 citations
TL;DR: In this article, LiCl·H2O and TiO2 contents were used to study the effects of surface properties on membrane performance and the results showed that interactions between the membrane surface and suspended solid constituents strongly influenced membrane fouling.
Abstract: Submerged ultrafiltration process was studied for treatment of refinery wastewater using PVDF hollow fiber membranes. The membranes were prepared via the phase inversion method by dispersing LiCl·H2O and TiO2 in the dope to study the effects of surface properties on membrane performance. The comparison of the performance and morphology was conducted on prepared PVDF composite membranes with various LiCl·H2O and TiO2 contents. The hollow fiber membranes were characterized by field emission scanning electron microscope (FESEM) and energy dispersive x-ray (EDX), average pore size and effective porosity measurements, contact angle measurement, permeability and rejection test. Maximum results were observed for membrane hydrophilicity, membrane porosity and average pore size when the TiO2 concentration was 1.95%. It was also found that interactions between the membrane surface and suspended solid constituents strongly influenced the membrane fouling. The maximum flux and rejection of refinery wastewater were 82.5 L/m2 h and 98.8%, respectively, when the PVDF composite membrane with TiO2 content of 1.95% is used at pH = 6.9.
119 citations
Cited by
More filters
Journal Article•
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …
3,197 citations
TL;DR: In this article, the main characteristics of the electroactive phases of polyvinylidene fluoride and copolymers are summarized, and some interesting potential applications and processing challenges are discussed.
Abstract: Poly(vinylidene fluoride), PVDF, and its copolymers are the family of polymers with the highest dielectric constant and electroactive response, including piezoelectric, pyroelectric and ferroelectric effects. The electroactive properties are increasingly important in a wide range of applications such as in biomedicine, energy generation and storage, monitoring and control, and include the development of sensors and actuators, separator and filtration membranes and smart scaffolds, among others. For many of these applications the polymer should be in one of its electroactive phases. This review presents the developments and summarizes the main characteristics of the electroactive phases of PVDF and copolymers, indicates the different processing strategies as well as the way in which the phase content is identified and quantified. Additionally, recent advances in the development of electroactive composites allowing novel effects, such as magnetoelectric responses, and opening new applications areas are presented. Finally, some of the more interesting potential applications and processing challenges are discussed.
2,242 citations
TL;DR: In this paper, the authors highlight the recent development of advanced membrane technology such as surface modification, addition of inorganic particles in polymer membrane and the development of ceramic membranes and discuss the effect of operating parameters on the membrane performance.
Abstract: Membrane separation processes have become an emerging technology for the treatment of oily wastewater due to high oil removal efficiency and relatively facile operational process. This review will highlight the recent development of advanced membrane technology such as surface modification, addition of inorganic particles in polymer membrane and the development of ceramic membranes. Additionally, the effect of operating parameters on the membrane performance is discussed in detail. Future outlooks in oil–water membrane separation are also discussed to further broaden the research and development related to this technology.
933 citations
TL;DR: In this paper, a review of polymeric membrane fabrication techniques for pressure driven membrane processes and membrane distillation is discussed, the fabrication technique, properties of the fabricated membranes and performance in water desalination are related.
Abstract: In this review, polymeric membrane fabrication techniques for pressure driven membrane processes and membrane distillation are discussed. The fabrication technique, properties of the fabricated membranes and performance in water desalination are related. Important parameters which affect the membrane performance such as crystallinity of the membrane based polymer, porous structure, hydrophobicity/hydrophilicity, membrane charge and surface roughness are analyzed. Despite the fact that extensive knowledge exist on how to ‘tailor’ membrane pore structure including its surface properties and cross-section morphology by selection of appropriate fabrication methods, there is still a challenge to produce reliable membranes with anti-fouling properties, chemical resistance, high mechanical strength with high flux and selectivity. To ensure progress in membrane performance, further improvements are needed of common membrane fabrication techniques such as phase inversion and interfacial polymerization. At the same time, the potential of novel fabrication techniques such as electrospinning and track-etching needs to be assessed. A comprehensive understanding between structure-surface properties and performance is a key for further development and progress in membrane technology for water desalination.
790 citations
01 Feb 2017
TL;DR: A review of membrane filtration, ion exchange, ion-exchange, adsorption, chemical precipitation, nanotechnology treatments, electrochemical and advanced oxidation processes are discussed in this article.
Abstract: Heavy metals like arsenic, copper, cadmium, chromium, nickel, zinc, lead, and mercury are major pollutants of fresh water reservoirs because of their toxic, non-biodegradable, and persistent nature. The industrial growth is the major source of heavy metals introducing such pollutants into different segments of the environment including air, water, soil, and biosphere. Heavy metals are easily absorbed by fishes and vegetables due to their high solubility in the aquatic environments. Hence, they may accumulate in the human body by means of the food chain. Various methods have been developed and used for water and wastewater treatment to decrease heavy metal concentrations. These technologies include membrane filtration, ion-exchange, adsorption, chemical precipitation, nanotechnology treatments, electrochemical and advanced oxidation processes. In this review, the methods as well as their mechanisms and efficiency are discussed.
724 citations