scispace - formally typeset
Search or ask a question
Author

Mohd Fadhil Md Din

Bio: Mohd Fadhil Md Din is an academic researcher from Syiah Kuala University. The author has contributed to research in topics: Wastewater & Biomass. The author has an hindex of 26, co-authored 154 publications receiving 2802 citations. Previous affiliations of Mohd Fadhil Md Din include Universiti Teknologi Malaysia & National Defence University, Pakistan.


Papers
More filters
Journal ArticleDOI
TL;DR: Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants, and free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants.

397 citations

Journal ArticleDOI
TL;DR: This work comprehensively reviewed the occurrence and distribution of MPs pollution in both marine and freshwater environments, including rivers, lakes and wastewater treatment plants (WWTPs), and proposed the development of new techniques for sampling MPs in aquatic environments and biota.

391 citations

Journal ArticleDOI
TL;DR: The main objective of this paper is to review the possibility of using water hyacinth for the removal of pollutants present in different types of wastewater.

267 citations

Journal ArticleDOI
TL;DR: The mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations are discussed and the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil are discussed.
Abstract: Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.

236 citations

Journal ArticleDOI
TL;DR: Water hyacinth was introduced as an ornamental crop in many countries more than a century ago, due to its attractive appearance and aesthetical value in the environment as discussed by the authors. Unfortunately, the flowers developed into invasive species due to their adaptability for a wide range of fresh water ecosystems and their interference with human activities.
Abstract: Water hyacinth was introduced as an ornamental crop in many countries more than a century ago, due to its attractive appearance and aesthetical value in the environment. Unfortunately, the flowers developed into invasive species due to their adaptability for a wide range of fresh water ecosystems and their interference with human activities. In the 21st century, they were considered as an alternative to fossil fuels, as many researchers found them capable of converting their content into fuel energy at less cost and recognized as an eco-friendly product. As water hyacinth is among the group of fastest growing plants, its biomass has the potential to become a potential renewable energy source and replace conventional fossil fuels, perhaps during the next decade. This is an essential mission to overcome the depletion of energy sources and also to fulfill the increasing demand of world energy. Instead of fuel energy, the dried biomass can also be fabricated as briquettes, which is suitable as co-firing agent in coal power plant. Thus, in future compacted biomass residues produced in the form of briquettes may decrease the dependence of coal to provide more energy The other application of water hyacinth into a co-compost material such as soil amendment to the sandy soil, can improve hydro-physical, chemical parameters of soil and will supply the growing crops with several nutrients. Water hyacinth has also drawn attention due to its bioremediation ability, capable of removing pollutants from domestic and industrial waste water effluents. Thus, the issue of water hyacinth should be evaluated from energy, engineering as well as environmental perspectives. In this review, the potential uses of water hyacinth are being classified and discussed.

144 citations


Cited by
More filters
01 Jan 2016
TL;DR: The properties of concrete is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading properties of concrete. As you may know, people have look hundreds times for their chosen readings like this properties of concrete, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they juggled with some malicious virus inside their computer. properties of concrete is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the properties of concrete is universally compatible with any devices to read.

1,701 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the environmental chemistry and ecotoxicology of hazardous heavy metals and metalloids is presented, focusing on their environmental persistence, toxicity for living organisms, and bioaccumulative potential.
Abstract: Heavy metals are well-known environmental pollutants due to their toxicity, persistence in the environment, and bioaccumulative nature. Their natural sources include weathering of metal-bearing rocks and volcanic eruptions, while anthropogenic sources include mining and various industrial and agricultural activities. Mining and industrial processing for extraction of mineral resources and their subsequent applications for industrial, agricultural, and economic development has led to an increase in the mobilization of these elements in the environment and disturbance of their biogeochemical cycles. Contamination of aquatic and terrestrial ecosystems with toxic heavy metals is an environmental problem of public health concern. Being persistent pollutants, heavy metals accumulate in the environment and consequently contaminate the food chains. Accumulation of potentially toxic heavy metals in biota causes a potential health threat to their consumers including humans. This article comprehensively reviews the different aspects of heavy metals as hazardous materials with special focus on their environmental persistence, toxicity for living organisms, and bioaccumulative potential. The bioaccumulation of these elements and its implications for human health are discussed with a special coverage on fish, rice, and tobacco. The article will serve as a valuable educational resource for both undergraduate and graduate students and for researchers in environmental sciences. Environmentally relevant most hazardous heavy metals and metalloids include Cr, Ni, Cu, Zn, Cd, Pb, Hg, and As. The trophic transfer of these elements in aquatic and terrestrial food chains/webs has important implications for wildlife and human health. It is very important to assess and monitor the concentrations of potentially toxic heavy metals and metalloids in different environmental segments and in the resident biota. A comprehensive study of the environmental chemistry and ecotoxicology of hazardous heavy metals and metalloids shows that steps should be taken to minimize the impact of these elements on human health and the environment.

1,382 citations

Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Journal ArticleDOI
TL;DR: A critical perspective on published studies of MP ingestion by aquatic biota is provided and there are significant mismatches between the types of MP most commonly found in the environment or reported in field studies and those used in laboratory experiments.

802 citations

Journal ArticleDOI
11 Sep 2015
TL;DR: The results of this study indicated that in 2013 scholars have published articles more than in other years, and energy, environment and sustainability were ranked as the first areas that have applied MCDM techniques and approaches.
Abstract: Multiple criteria decision-making (MCDM) is considered as a complex decision-making (DM) tool involving both quantitative and qualitative factors. In recent years, several MCDM techniques and approaches have been suggested to choosing the optimal probable options. The purpose of this article is to systematically review the applications and methodologies of the MCDM techniques and approaches. This study reviewed a total of 393 articles published from 2000 to 2014 in more than 120 peer reviewed journals (extracted from Web of Science). According to experts’ opinion, these articles were grouped into 15 fields. Furthermore, these articles were categorised based on authors, publication date, name of journals, methods, tools, and type of research (MCDM utilising research, MCDM developing research, and MCDM proposing research). The results of this study indicated that in 2013 scholars have published articles more than in other years. In addition, the analytic hierarchy process (AHP) method in the individual tool...

704 citations