scispace - formally typeset
Search or ask a question
Author

Mohd Javaid

Other affiliations: Apollo Hospital, Indraprastha
Bio: Mohd Javaid is an academic researcher from Jamia Millia Islamia. The author has contributed to research in topics: Industry 4.0 & Health care. The author has an hindex of 31, co-authored 157 publications receiving 3731 citations. Previous affiliations of Mohd Javaid include Apollo Hospital, Indraprastha.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The role of AI as a decisive technology to analyze, prepare us for prevention and fight with COVID-19 (Coronavirus) and other pandemics is reviewed and seven significant applications of AI for CO VID-19 pandemic are identified.
Abstract: Background and aims Healthcare delivery requires the support of new technologies like Artificial Intelligence (AI), Internet of Things (IoT), Big Data and Machine Learning to fight and look ahead against the new diseases. We aim to review the role of AI as a decisive technology to analyze, prepare us for prevention and fight with COVID-19 (Coronavirus) and other pandemics. Methods The rapid review of the literature is done on the database of Pubmed, Scopus and Google Scholar using the keyword of COVID-19 or Coronavirus and Artificial Intelligence or AI. Collected the latest information regarding AI for COVID-19, then analyzed the same to identify its possible application for this disease. Results We have identified seven significant applications of AI for COVID-19 pandemic. This technology plays an important role to detect the cluster of cases and to predict where this virus will affect in future by collecting and analyzing all previous data. Conclusions Healthcare organizations are in an urgent need for decision-making technologies to handle this virus and help them in getting proper suggestions in real-time to avoid its spread. AI works in a proficient way to mimic like human intelligence. It may also play a vital role in understanding and suggesting the development of a vaccine for COVID-19. This result-driven technology is used for proper screening, analyzing, prediction and tracking of current patients and likely future patients. The significant applications are applied to tracks data of confirmed, recovered and death cases.

858 citations

Journal ArticleDOI
TL;DR: Ten major technologies of Industry 4.0 can fulfil the requirements of customised face masks, gloves, and collect information for healthcare systems for proper controlling and treating of COVID-19 patients.
Abstract: Background and aims COVID 19 (Coronavirus) pandemic has created surge demand for essential healthcare equipment, medicines along with the requirement for advance information technologies applications. Industry 4.0 is known as the fourth industrial revolution, which has the potential to fulfil customised requirement during COVID-19 crisis. This revolution has started with the applications of advance manufacturing and digital information technologies. Methods A detailed review of the literature is done on the technologies of Industry 4.0 and their applications in the COVID-19 pandemic, using appropriate search words on the databases of PubMed, SCOPUS, Google Scholar and Research Gate. Results We found several useful technologies of Industry 4.0 which help for proper control and management of COVID-19 pandemic and these have been discussed in this paper. The available technologies of Industry 4.0 could also help the detection and diagnosis of COVID-19 and other related problems and symptoms. Conclusions Industry 4.0 can fulfil the requirements of customised face masks, gloves, and collect information for healthcare systems for proper controlling and treating of COVID-19 patients. We have discussed ten major technologies of Industry 4.0 which help to solve the problems of this virus. It is useful to provide day to day update of an infected patient, area-wise, age-wise and state-wise with proper surveillance systems. We also believe that the proper implementation of these technologies would help to enhance education and communication regarding public health. These Industry 4.0 technologies could provide a lot of innovative ideas and solution for fighting local and global medical emergencies.

482 citations

Journal ArticleDOI
TL;DR: Internet of Things (IoT) enabled healthcare system is useful for proper monitoring of COVID-19 patients, by employing an interconnected network and helps to increase patient satisfaction and reduces readmission rate in the hospital.
Abstract: Background and aim The current global challenge of COVID-19 pandemic has surpassed the provincial, radical, conceptual, spiritual, social, and pedagogical boundaries. Internet of Things (IoT) enabled healthcare system is useful for proper monitoring of COVID-19 patients, by employing an interconnected network. This technology helps to increase patient satisfaction and reduces readmission rate in the hospital. Methods Searched the databases of Google Scholar, PubMed, SCOPUS and ResearchGate using the keywords "Internet of things" or "IoT" and "COVID-19". Further inputs are also taken from blogs and relevant reports. Results IoT implementation impacts on reducing healthcare cost and improve treatment outcome of the infected patient. Therefore, this present study based research is attempted to explore, discuss, and highlight the overall applications of the well-proven IoT philosophy by offering a perspective roadmap to tackle the COVID-19 pandemic. Finally, twelve significant applications of IoT are identified and discussed. It has ultimately forced the researchers, academicians, and scientists to propose some productive solutions to overcome or confront this pandemic. Conclusions IoT is helpful for an infected patient of COVID-19 to identify symptoms and provides better treatment rapidly. It is useful for patient, physician, surgeon and hospital management system.

451 citations

Journal ArticleDOI
TL;DR: The aim of work is to illustrate the Additive Manufacturing technology as being used in medical and its benefits along-with contemporary and future applications to solve medical problems with extensive benefit to humanity.
Abstract: A significant number of the research paper on Medical cases using Additive manufacturing studied. Different applications of additive manufacturing technologies in the medical area analysed for prov...

297 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The role of AI as a decisive technology to analyze, prepare us for prevention and fight with COVID-19 (Coronavirus) and other pandemics is reviewed and seven significant applications of AI for CO VID-19 pandemic are identified.
Abstract: Background and aims Healthcare delivery requires the support of new technologies like Artificial Intelligence (AI), Internet of Things (IoT), Big Data and Machine Learning to fight and look ahead against the new diseases. We aim to review the role of AI as a decisive technology to analyze, prepare us for prevention and fight with COVID-19 (Coronavirus) and other pandemics. Methods The rapid review of the literature is done on the database of Pubmed, Scopus and Google Scholar using the keyword of COVID-19 or Coronavirus and Artificial Intelligence or AI. Collected the latest information regarding AI for COVID-19, then analyzed the same to identify its possible application for this disease. Results We have identified seven significant applications of AI for COVID-19 pandemic. This technology plays an important role to detect the cluster of cases and to predict where this virus will affect in future by collecting and analyzing all previous data. Conclusions Healthcare organizations are in an urgent need for decision-making technologies to handle this virus and help them in getting proper suggestions in real-time to avoid its spread. AI works in a proficient way to mimic like human intelligence. It may also play a vital role in understanding and suggesting the development of a vaccine for COVID-19. This result-driven technology is used for proper screening, analyzing, prediction and tracking of current patients and likely future patients. The significant applications are applied to tracks data of confirmed, recovered and death cases.

858 citations

Journal ArticleDOI
22 Mar 2021
TL;DR: In this paper, the authors present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application and highlight the challenges and potential research directions based on their study.
Abstract: In the current age of the Fourth Industrial Revolution (4IR or Industry 4.0), the digital world has a wealth of data, such as Internet of Things (IoT) data, cybersecurity data, mobile data, business data, social media data, health data, etc. To intelligently analyze these data and develop the corresponding smart and automated applications, the knowledge of artificial intelligence (AI), particularly, machine learning (ML) is the key. Various types of machine learning algorithms such as supervised, unsupervised, semi-supervised, and reinforcement learning exist in the area. Besides, the deep learning, which is part of a broader family of machine learning methods, can intelligently analyze the data on a large scale. In this paper, we present a comprehensive view on these machine learning algorithms that can be applied to enhance the intelligence and the capabilities of an application. Thus, this study’s key contribution is explaining the principles of different machine learning techniques and their applicability in various real-world application domains, such as cybersecurity systems, smart cities, healthcare, e-commerce, agriculture, and many more. We also highlight the challenges and potential research directions based on our study. Overall, this paper aims to serve as a reference point for both academia and industry professionals as well as for decision-makers in various real-world situations and application areas, particularly from the technical point of view.

659 citations

Journal ArticleDOI
TL;DR: The ongoing development in AI and ML has significantly improved treatment, medication, screening, prediction, forecasting, contact tracing, and drug/vaccine development process for the Covid-19 pandemic and reduce the human intervention in medical practice.
Abstract: Background and objective During the recent global urgency, scientists, clinicians, and healthcare experts around the globe keep on searching for a new technology to support in tackling the Covid-19 pandemic The evidence of Machine Learning (ML) and Artificial Intelligence (AI) application on the previous epidemic encourage researchers by giving a new angle to fight against the novel Coronavirus outbreak This paper aims to comprehensively review the role of AI and ML as one significant method in the arena of screening, predicting, forecasting, contact tracing, and drug development for SARS-CoV-2 and its related epidemic Method A selective assessment of information on the research article was executed on the databases related to the application of ML and AI technology on Covid-19 Rapid and critical analysis of the three crucial parameters, ie, abstract, methodology, and the conclusion was done to relate to the model's possibilities for tackling the SARS-CoV-2 epidemic Result This paper addresses on recent studies that apply ML and AI technology towards augmenting the researchers on multiple angles It also addresses a few errors and challenges while using such algorithms in real-world problems The paper also discusses suggestions conveying researchers on model design, medical experts, and policymakers in the current situation while tackling the Covid-19 pandemic and ahead Conclusion The ongoing development in AI and ML has significantly improved treatment, medication, screening, prediction, forecasting, contact tracing, and drug/vaccine development process for the Covid-19 pandemic and reduce the human intervention in medical practice However, most of the models are not deployed enough to show their real-world operation, but they are still up to the mark to tackle the SARS-CoV-2 epidemic

539 citations

Journal ArticleDOI
TL;DR: The available therapies to fight CO VID-19, the development of vaccines, the role of artificial intelligence in the management of the pandemic and limiting the spread of the virus, the impact of the COVID-19 epidemic on the authors' lifestyle, and preparation for a possible second wave are provided.
Abstract: In December 2019, an outbreak of pneumonia of unknown origin was reported in Wuhan, Hubei Province, China. Pneumonia cases were epidemiologically linked to the Huanan Seafood Wholesale Market. Inoculation of respiratory samples into human airway epithelial cells, Vero E6 and Huh7 cell lines, led to the isolation of a novel respiratory virus whose genome analysis showed it to be a novel coronavirus related to SARS-CoV, and therefore named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a betacoronavirus belonging to the subgenus Sarbecovirus. The global spread of SARS-CoV-2 and the thousands of deaths caused by coronavirus disease (COVID-19) led the World Health Organization to declare a pandemic on 12 March 2020. To date, the world has paid a high toll in this pandemic in terms of human lives lost, economic repercussions and increased poverty. In this review, we provide information regarding the epidemiology, serological and molecular diagnosis, origin of SARS-CoV-2 and its ability to infect human cells, and safety issues. Then we focus on the available therapies to fight COVID-19, the development of vaccines, the role of artificial intelligence in the management of the pandemic and limiting the spread of the virus, the impact of the COVID-19 epidemic on our lifestyle, and preparation for a possible second wave.

494 citations