scispace - formally typeset
Search or ask a question
Author

Mohit Bhardwaj

Bio: Mohit Bhardwaj is an academic researcher from McGill University. The author has contributed to research in topics: Fast radio burst & Physics. The author has an hindex of 25, co-authored 57 publications receiving 3335 citations. Previous affiliations of Mohit Bhardwaj include Indraprastha Institute of Information Technology & Indian Institute of Technology Delhi.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
01 Nov 2020-Nature
TL;DR: In this paper, the authors reported the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project.
Abstract: Magnetars are highly magnetized young neutron stars that occasionally produce enormous bursts and flares of X-rays and gamma-rays. Of the approximately thirty magnetars currently known in our Galaxy and Magellanic Clouds, five have exhibited transient radio pulsations. Fast radio bursts (FRBs) are millisecond-duration bursts of radio waves arriving from cosmological distances. Some have been seen to repeat. A leading model for repeating FRBs is that they are extragalactic magnetars, powered by their intense magnetic fields. However, a challenge to this model has been that FRBs must have radio luminosities many orders of magnitude larger than those seen from known Galactic magnetars. Here we report the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project. The fluence of this two-component bright radio burst and the estimated distance to SGR 1935+2154 together imply a 400-800 MHz burst energy of $\sim 3 \times 10^{34}$ erg, which is three orders of magnitude brighter than those of any radio-emitting magnetar detected thus far. Such a burst coming from a nearby galaxy would be indistinguishable from a typical FRB. This event thus bridges a large fraction of the radio energy gap between the population of Galactic magnetars and FRBs, strongly supporting the notion that magnetars are the origin of at least some FRBs.

407 citations

Journal ArticleDOI
09 Jan 2020-Nature
TL;DR: Only one repeating fast radio burst has been localized, to an irregular dwarf galaxy; now another is found to come from a star-forming region of a nearby spiral galaxy, suggesting that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
Abstract: Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4–7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9–12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments. Only one repeating fast radio burst has been localized, to an irregular dwarf galaxy; now another is found to come from a star-forming region of a nearby spiral galaxy.

347 citations

Journal ArticleDOI
01 Jan 2019-Nature
TL;DR: In this paper, the authors reported the detection of six repeat bursts from FRB 180814.J0422+73, one of the 13 FRBs detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project during its pre-commissioning phase in July and August 2018.
Abstract: The discovery of a repeating Fast Radio Burst (FRB) source, FRB 121102, eliminated models involving cataclysmic events for this source. No other repeating FRB has yet been detected in spite of many recent FRB discoveries and follow-ups, suggesting repeaters may be rare in the FRB population. Here we report the detection of six repeat bursts from FRB 180814.J0422+73, one of the 13 FRBs detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project during its pre-commissioning phase in July and August 2018. These repeat bursts are consistent with originating from a single position on the sky, with the same dispersion measure (DM), ~189 pc cm-3. This DM is approximately twice the expected Milky Way column density, and implies an upper limit on the source redshift of 0.1, at least a factor of ~2 closer than FRB 121102. In some of the repeat bursts, we observe sub-pulse frequency structure, drifting, and spectral variation reminiscent of that seen in FRB 121102, suggesting similar emission mechanisms and/or propagation effects. This second repeater, found among the first few CHIME/FRB discoveries, suggests that there exists -- and that CHIME/FRB and other wide-field, sensitive radio telescopes will find -- a substantial population of repeating FRBs.

283 citations

Journal ArticleDOI
TL;DR: The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit radio telescope operating across the 400-800 MHz band as discussed by the authors, which is used for the detection of fast radio bursts (FRBs).
Abstract: The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a novel transit radio telescope operating across the 400-800-MHz band. CHIME is comprised of four 20-m x 100-m semi-cylindrical paraboloid reflectors, each of which has 256 dual-polarization feeds suspended along its axis, giving it a >200 square degree field-of-view. This, combined with wide bandwidth, high sensitivity, and a powerful correlator makes CHIME an excellent instrument for the detection of Fast Radio Bursts (FRBs). The CHIME Fast Radio Burst Project (CHIME/FRB) will search beam-formed, high time-and frequency-resolution data in real time for FRBs in the CHIME field-of-view. Here we describe the CHIME/FRB backend, including the real-time FRB search and detection software pipeline as well as the planned offline analyses. We estimate a CHIME/FRB detection rate of 2-42 FRBs/sky/day normalizing to the rate estimated at 1.4-GHz by Vander Wiel et al. (2016). Likely science outcomes of CHIME/FRB are also discussed. CHIME/FRB is currently operational in a commissioning phase, with science operations expected to commence in the latter half of 2018.

245 citations


Cited by
More filters
01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations

01 Jan 2016
TL;DR: The interferometry and synthesis in radio astronomy is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you for reading interferometry and synthesis in radio astronomy. As you may know, people have look numerous times for their favorite novels like this interferometry and synthesis in radio astronomy, but end up in malicious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they are facing with some malicious virus inside their computer. interferometry and synthesis in radio astronomy is available in our book collection an online access to it is set as public so you can download it instantly. Our book servers spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the interferometry and synthesis in radio astronomy is universally compatible with any devices to read.

630 citations

Journal ArticleDOI
01 Nov 2020-Nature
TL;DR: In this paper, the authors reported the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project.
Abstract: Magnetars are highly magnetized young neutron stars that occasionally produce enormous bursts and flares of X-rays and gamma-rays. Of the approximately thirty magnetars currently known in our Galaxy and Magellanic Clouds, five have exhibited transient radio pulsations. Fast radio bursts (FRBs) are millisecond-duration bursts of radio waves arriving from cosmological distances. Some have been seen to repeat. A leading model for repeating FRBs is that they are extragalactic magnetars, powered by their intense magnetic fields. However, a challenge to this model has been that FRBs must have radio luminosities many orders of magnitude larger than those seen from known Galactic magnetars. Here we report the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project. The fluence of this two-component bright radio burst and the estimated distance to SGR 1935+2154 together imply a 400-800 MHz burst energy of $\sim 3 \times 10^{34}$ erg, which is three orders of magnitude brighter than those of any radio-emitting magnetar detected thus far. Such a burst coming from a nearby galaxy would be indistinguishable from a typical FRB. This event thus bridges a large fraction of the radio energy gap between the population of Galactic magnetars and FRBs, strongly supporting the notion that magnetars are the origin of at least some FRBs.

407 citations

Posted Content
TL;DR: In this article, the authors present the science case, reference design, and project plan for the Stage-4 ground-based cosmic microwave background experiment CMB-S4, as well as the experimental data.
Abstract: We present the science case, reference design, and project plan for the Stage-4 ground-based cosmic microwave background experiment CMB-S4.

362 citations